These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17634569)

  • 1. Techniques for analysis of biological aging.
    Tollefsbol TO
    Methods Mol Biol; 2007; 371():1-7. PubMed ID: 17634569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does p53 affect organismal aging?
    Donehower LA
    J Cell Physiol; 2002 Jul; 192(1):23-33. PubMed ID: 12115733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRT1: cellular senescence, cancer and organismal aging?
    Lim CS
    Med Hypotheses; 2006; 67(4):989-90. PubMed ID: 16563646
    [No Abstract]   [Full Text] [Related]  

  • 4. Cellular senescence in aging primates.
    Herbig U; Ferreira M; Condel L; Carey D; Sedivy JM
    Science; 2006 Mar; 311(5765):1257. PubMed ID: 16456035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The thorny path linking cellular senescence to organismal aging.
    Patil CK; Mian IS; Campisi J
    Mech Ageing Dev; 2005 Oct; 126(10):1040-5. PubMed ID: 16153470
    [No Abstract]   [Full Text] [Related]  

  • 6. p63 deficiency activates a program of cellular senescence and leads to accelerated aging.
    Keyes WM; Wu Y; Vogel H; Guo X; Lowe SW; Mills AA
    Genes Dev; 2005 Sep; 19(17):1986-99. PubMed ID: 16107615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype.
    Salminen A; Ojala J; Kaarniranta K; Haapasalo A; Hiltunen M; Soininen H
    Eur J Neurosci; 2011 Jul; 34(1):3-11. PubMed ID: 21649759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fission yeast and other yeasts as emergent models to unravel cellular aging in eukaryotes.
    Roux AE; Chartrand P; Ferbeyre G; Rokeach LA
    J Gerontol A Biol Sci Med Sci; 2010 Jan; 65(1):1-8. PubMed ID: 19875745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultured cerebellar granule neurons as an in vitro aging model: topoisomerase IIβ as an additional biomarker in DNA repair and aging.
    Bhanu MU; Mandraju RK; Bhaskar C; Kondapi AK
    Toxicol In Vitro; 2010 Oct; 24(7):1935-45. PubMed ID: 20708677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FRAR course on laboratory approaches to aging. Cellular aging, in vitro and in vivo.
    Tréton JA
    Aging (Milano); 1993 Aug; 5(4):291-7. PubMed ID: 8297932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of exosomes and microRNAs in senescence and aging.
    Xu D; Tahara H
    Adv Drug Deliv Rev; 2013 Mar; 65(3):368-75. PubMed ID: 22820533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From cells to ageing: a review of models and mechanisms of cellular senescence and their impact on human ageing.
    de Magalhães JP
    Exp Cell Res; 2004 Oct; 300(1):1-10. PubMed ID: 15383309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer, aging and cellular senescence.
    Campisi J
    In Vivo; 2000; 14(1):183-8. PubMed ID: 10757076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method to study the expression of DNA methyltransferases in aging systems in vitro.
    Berletch JB; Phipps SM; Walthall SL; Andrews LG; Tollefsbol TO
    Methods Mol Biol; 2007; 371():81-7. PubMed ID: 17634575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How might replicative senescence contribute to human ageing?
    Faragher RG; Kipling D
    Bioessays; 1998 Dec; 20(12):985-91. PubMed ID: 10048298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease.
    James EL; Michalek RD; Pitiyage GN; de Castro AM; Vignola KS; Jones J; Mohney RP; Karoly ED; Prime SS; Parkinson EK
    J Proteome Res; 2015 Apr; 14(4):1854-71. PubMed ID: 25690941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular cell senescence and vascular aging.
    Minamino T; Miyauchi H; Yoshida T; Tateno K; Kunieda T; Komuro I
    J Mol Cell Cardiol; 2004 Feb; 36(2):175-83. PubMed ID: 14871544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Senescent phenotype achieved in vitro is indistinguishable, with the exception of Bcl-2 content, from that attained during the in vivo aging process.
    Königsberg M; López-Diazguerrero NE; Aguilar MC; Ventura JL; Gutiérrez-Ruiz MC; Zentella A
    Cell Biol Int; 2004; 28(8-9):641-51. PubMed ID: 15350599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro 3-D model based on extending time of culture for studying chronological epidermis aging.
    Dos Santos M; Metral E; Boher A; Rousselle P; Thepot A; Damour O
    Matrix Biol; 2015 Sep; 47():85-97. PubMed ID: 25840344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term Neuroglial Cocultures as a Brain Aging Model: Hallmarks of Senescence, MicroRNA Expression Profiles, and Comparison With In Vivo Models.
    Bigagli E; Luceri C; Scartabelli T; Dolara P; Casamenti F; Pellegrini-Giampietro DE; Giovannelli L
    J Gerontol A Biol Sci Med Sci; 2016 Jan; 71(1):50-60. PubMed ID: 25568096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.