BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17634602)

  • 1. Creation of novel enantioselective lipases by SIMPLEX.
    Koga Y; Yamane T; Nakano H
    Methods Mol Biol; 2007; 375():165-81. PubMed ID: 17634602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverting enantioselectivity of Burkholderia cepacia KWI-56 lipase by combinatorial mutation and high-throughput screening using single-molecule PCR and in vitro expression.
    Koga Y; Kato K; Nakano H; Yamane T
    J Mol Biol; 2003 Aug; 331(3):585-92. PubMed ID: 12899830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifying the chain-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vitro combinatorial mutagenesis in the substrate-binding site.
    Yang J; Koga Y; Nakano H; Yamane T
    Protein Eng; 2002 Feb; 15(2):147-52. PubMed ID: 11917151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel strategy for protein exploration: high-throughput screening assisted with fuzzy neural network.
    Kato R; Nakano H; Konishi H; Kato K; Koga Y; Yamane T; Kobayashi T; Honda H
    J Mol Biol; 2005 Aug; 351(3):683-92. PubMed ID: 16019025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structure-controlled investigation of lipase enantioselectivity by a path-planning approach.
    Guieysse D; Cortés J; Puech-Guenot S; Barbe S; Lafaquière V; Monsan P; Siméon T; André I; Remaud-Siméon M
    Chembiochem; 2008 May; 9(8):1308-17. PubMed ID: 18418817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of lipase enantioselectivity by engineering the substrate binding site and access channel.
    Lafaquière V; Barbe S; Puech-Guenot S; Guieysse D; Cortés J; Monsan P; Siméon T; André I; Remaud-Siméon M
    Chembiochem; 2009 Nov; 10(17):2760-71. PubMed ID: 19816890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations towards enantioselectivity adversely affect secretion of Pseudomonas aeruginosa lipase.
    Hausmann S; Wilhelm S; Jaeger KE; Rosenau F
    FEMS Microbiol Lett; 2008 May; 282(1):65-72. PubMed ID: 18355276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational creation of mutant enzyme showing remarkable enhancement of catalytic activity and enantioselectivity toward poor substrates.
    Ema T; Kamata S; Takeda M; Nakano Y; Sakai T
    Chem Commun (Camb); 2010 Aug; 46(30):5440-2. PubMed ID: 20383389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity.
    Boersma YL; Pijning T; Bosma MS; van der Sloot AM; Godinho LF; Dröge MJ; Winter RT; van Pouderoyen G; Dijkstra BW; Quax WJ
    Chem Biol; 2008 Aug; 15(8):782-9. PubMed ID: 18721749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational control of enantioselectivity of lipase by site-directed mutagenesis based on the mechanism.
    Ema T; Fujii T; Ozaki M; Korenaga T; Sakai T
    Chem Commun (Camb); 2005 Oct; (37):4650-1. PubMed ID: 16175280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changing the enantioselectivity of enzymes by directed evolution.
    Reetz MT
    Methods Enzymol; 2004; 388():238-56. PubMed ID: 15289076
    [No Abstract]   [Full Text] [Related]  

  • 12. Redesign of enzyme for improving catalytic activity and enantioselectivity toward poor substrates: manipulation of the transition state.
    Ema T; Nakano Y; Yoshida D; Kamata S; Sakai T
    Org Biomol Chem; 2012 Aug; 10(31):6299-308. PubMed ID: 22710791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid.
    Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W
    Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity of lipase from Burkholderia cepacia in the synthesis of 3'-arylaliphatic acid esters of floxuridine.
    Li N; Zeng QM; Zong MH
    J Biotechnol; 2009 Jul; 142(3-4):267-70. PubMed ID: 19539679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha-substituted esters.
    Engström K; Nyhlén J; Sandström AG; Bäckvall JE
    J Am Chem Soc; 2010 May; 132(20):7038-42. PubMed ID: 20450151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site.
    Bordes F; Cambon E; Dossat-Létisse V; André I; Croux C; Nicaud JM; Marty A
    Chembiochem; 2009 Jul; 10(10):1705-13. PubMed ID: 19504508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and functional expression of esf gene encoding enantioselective lipase from Serratia marcescens ES-2 for kinetic resolution of optically active (S)-flurbiprofen.
    Lee KW; Bae HA; Lee YH
    J Microbiol Biotechnol; 2007 Jan; 17(1):74-80. PubMed ID: 18051356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-scale production of Burkholderia cepacia ATCC21808 lipase adapted to high-throughput screening.
    Puech-Guenot S; Lafaquière V; Guieysse D; Landric-Burtin L; Monsan P; Remaud-Siméon M
    J Biomol Screen; 2008 Jan; 13(1):72-9. PubMed ID: 18227227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mirror-image packing in enantiomer discrimination molecular basis for the enantioselectivity of B.cepacia lipase toward 2-methyl-3-phenyl-1-propanol.
    Mezzetti A; Schrag JD; Cheong CS; Kazlauskas RJ
    Chem Biol; 2005 Apr; 12(4):427-37. PubMed ID: 15850979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel genetic selection system for improved enantioselectivity of Bacillus subtilis lipase A.
    Boersma YL; Dröge MJ; van der Sloot AM; Pijning T; Cool RH; Dijkstra BW; Quax WJ
    Chembiochem; 2008 May; 9(7):1110-5. PubMed ID: 18383241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.