These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17634608)

  • 1. Genomic signal processing: from matrix algebra to genetic networks.
    Alter O
    Methods Mol Biol; 2007; 377():17-60. PubMed ID: 17634608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrative analysis of genome-scale data by using pseudoinverse projection predicts novel correlation between DNA replication and RNA transcription.
    Alter O; Golub GH
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16577-82. PubMed ID: 15545604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms.
    Alter O; Brown PO; Botstein D
    Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3351-6. PubMed ID: 12631705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome wide oscillations in expression. Wavelet analysis of time series data from yeast expression arrays uncovers the dynamic architecture of phenotype.
    Klevecz RR; Murray DB
    Mol Biol Rep; 2001; 28(2):73-82. PubMed ID: 11931391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of yeast transcriptional regulation networks using multivariate random forests.
    Xiao Y; Segal MR
    PLoS Comput Biol; 2009 Jun; 5(6):e1000414. PubMed ID: 19543377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing the pathways of a cellular system from genome-scale signals by using matrix and tensor computations.
    Alter O; Golub GH
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17559-64. PubMed ID: 16314560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of complex regulatory networks.
    Stelling J; Gilles ED
    IEEE Trans Nanobioscience; 2004 Sep; 3(3):172-9. PubMed ID: 15473069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Singular value decomposition for genome-wide expression data processing and modeling.
    Alter O; Brown PO; Botstein D
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):10101-6. PubMed ID: 10963673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive, mechanistically detailed, and executable model of the cell division cycle in Saccharomyces cerevisiae.
    Münzner U; Klipp E; Krantz M
    Nat Commun; 2019 Mar; 10(1):1308. PubMed ID: 30899000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintenance and expression of the S. cerevisiae mitochondrial genome--from genetics to evolution and systems biology.
    Lipinski KA; Kaniak-Golik A; Golik P
    Biochim Biophys Acta; 2010; 1797(6-7):1086-98. PubMed ID: 20056105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genome-wide transcriptional analysis of the mitotic cell cycle.
    Cho RJ; Campbell MJ; Winzeler EA; Steinmetz L; Conway A; Wodicka L; Wolfsberg TG; Gabrielian AE; Landsman D; Lockhart DJ; Davis RW
    Mol Cell; 1998 Jul; 2(1):65-73. PubMed ID: 9702192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome network component analysis with limited microarray data.
    Galbraith SJ; Tran LM; Liao JC
    Bioinformatics; 2006 Aug; 22(15):1886-94. PubMed ID: 16766556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies.
    Omberg L; Golub GH; Alter O
    Proc Natl Acad Sci U S A; 2007 Nov; 104(47):18371-6. PubMed ID: 18003902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks.
    Soh KC; Miskovic L; Hatzimanikatis V
    FEMS Yeast Res; 2012 Mar; 12(2):129-43. PubMed ID: 22129227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary transcripts: From the discovery of RNA processing to current concepts of gene expression - Review.
    Scherrer K
    Exp Cell Res; 2018 Dec; 373(1-2):1-33. PubMed ID: 30266658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional redundancy in the yeast cell cycle: FUS3 and KSS1 have both overlapping and unique functions.
    Elion EA; Brill JA; Fink GR
    Cold Spring Harb Symp Quant Biol; 1991; 56():41-9. PubMed ID: 1819502
    [No Abstract]   [Full Text] [Related]  

  • 18. Detecting biological associations between genes based on the theory of phase synchronization.
    Kim CS; Riikonen P; Salakoski T
    Biosystems; 2008 May; 92(2):99-113. PubMed ID: 18289772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking RNA measurements and proteomics with genome-scale models.
    Gowen CM; Fong SS
    Methods Mol Biol; 2013; 985():429-45. PubMed ID: 23417816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer evaluation of network dynamics models with application to cell cycle control in budding yeast.
    Allen NA; Chen KC; Shaffer CA; Tyson JJ; Watson LT
    Syst Biol (Stevenage); 2006 Jan; 153(1):13-21. PubMed ID: 16983831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.