These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17635024)

  • 21. Effects of liquid phase on basic properties of alpha-tricalcium phosphate-based apatite cement.
    Oda M; Takeuchi A; Lin X; Matsuya S; Ishikawa K
    Dent Mater J; 2008 Sep; 27(5):672-7. PubMed ID: 18972783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brushite cement additives inhibit attachment to cell culture beads.
    Jamshidi P; Bridson RH; Wright AJ; Grover LM
    Biotechnol Bioeng; 2013 May; 110(5):1487-94. PubMed ID: 23242924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of chlorhexidine-releasing, fast-setting, brushite bone cements.
    Young AM; Ng PY; Gbureck U; Nazhat SN; Barralet JE; Hofmann MP
    Acta Biomater; 2008 Jul; 4(4):1081-8. PubMed ID: 18313374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of fibre reinforcement on the mechanical properties of brushite cement.
    Gorst NJ; Perrie Y; Gbureck U; Hutton AL; Hofmann MP; Grover LM; Barralet JE
    Acta Biomater; 2006 Jan; 2(1):95-102. PubMed ID: 16701863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cements from nanocrystalline hydroxyapatite.
    Barralet JE; Lilley KJ; Grover LM; Farrar DF; Ansell C; Gbureck U
    J Mater Sci Mater Med; 2004 Apr; 15(4):407-11. PubMed ID: 15332608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent.
    Sarda S; Fernández E; Nilsson M; Balcells M; Planell JA
    J Biomed Mater Res; 2002 Sep; 61(4):653-9. PubMed ID: 12115456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and characterizations of an injectable and biodegradable high-strength iron-bearing brushite cement for bone repair and vertebral augmentation applications.
    Ding L; Wang H; Li J; Liu D; Bai J; Yuan Z; Yang J; Bian L; Zhao X; Li B; Chen S
    Biomater Sci; 2022 Dec; 11(1):96-107. PubMed ID: 36445030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of interconnected pore forming α-tricalcium phosphate foam granules cement.
    Shariff KA; Tsuru K; Ishikawa K
    J Biomater Appl; 2016 Jan; 30(6):838-45. PubMed ID: 26329353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of processing conditions of dicalcium phosphate cements on graft resorption and bone formation.
    Sheikh Z; Zhang YL; Tamimi F; Barralet J
    Acta Biomater; 2017 Apr; 53():526-535. PubMed ID: 28213100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnesium substitution in brushite cements.
    Alkhraisat MH; Cabrejos-Azama J; Rodríguez CR; Jerez LB; Cabarcos EL
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):475-81. PubMed ID: 25428098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. (31)P Solid-State NMR study of the chemical setting process of a dual-paste injectable brushite cements.
    Legrand AP; Sfihi H; Lequeux N; Lemaître J
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):46-54. PubMed ID: 19365821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus.
    Camilleri J; Sorrentino F; Damidot D
    Dent Mater; 2013 May; 29(5):580-93. PubMed ID: 23537569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line.
    Xia Z; Grover LM; Huang Y; Adamopoulos IE; Gbureck U; Triffitt JT; Shelton RM; Barralet JE
    Biomaterials; 2006 Sep; 27(26):4557-65. PubMed ID: 16720039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physicochemical properties of TTCP/DCPA system cement formed in physiological saline solution and its cytotoxicity.
    Dagang G; Kewei X; Haoliang S; Yong H
    J Biomed Mater Res A; 2006 May; 77(2):313-23. PubMed ID: 16402384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trivalent chromium incorporated in a crystalline calcium phosphate matrix accelerates materials degradation and bone formation in vivo.
    Rentsch B; Bernhardt A; Henß A; Ray S; Rentsch C; Schamel M; Gbureck U; Gelinsky M; Rammelt S; Lode A
    Acta Biomater; 2018 Mar; 69():332-341. PubMed ID: 29355718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites.
    Chen WC; Ju CP; Wang JC; Hung CC; Chern Lin JH
    Dent Mater; 2008 Dec; 24(12):1616-22. PubMed ID: 18502499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of a porosity measurement method for wet calcium phosphate cements.
    Ajaxon I; Maazouz Y; Ginebra MP; Öhman C; Persson C
    J Biomater Appl; 2015 Nov; 30(5):526-36. PubMed ID: 26163278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frozen delivery of brushite calcium phosphate cements.
    Grover LM; Hofmann MP; Gbureck U; Kumarasami B; Barralet JE
    Acta Biomater; 2008 Nov; 4(6):1916-23. PubMed ID: 18657496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of citric acid on setting reaction and tissue response to β-TCP granular cement.
    Fukuda N; Tsuru K; Mori Y; Ishikawa K
    Biomed Mater; 2017 Feb; 12(1):015027. PubMed ID: 28233758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Eggshell derived brushite bone cement with minimal inflammatory response and higher osteoconductive potential.
    Jayasree R; Kumar TSS; Venkateswari R; Nankar RP; Doble M
    J Mater Sci Mater Med; 2019 Oct; 30(10):113. PubMed ID: 31583477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.