BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17635032)

  • 1. Hydroxy fatty acid based polyanhydride as drug delivery system: synthesis, characterization, in vitro degradation, drug release, and biocompatibility.
    Jain JP; Modi S; Kumar N
    J Biomed Mater Res A; 2008 Mar; 84(3):740-52. PubMed ID: 17635032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copolymers of pharmaceutical grade lactic acid and sebacic acid: drug release behavior and biocompatibility.
    Modi S; Jain JP; Domb AJ; Kumar N
    Eur J Pharm Biopharm; 2006 Nov; 64(3):277-86. PubMed ID: 16846724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of poly(sebacic acid-co-ricinoleic acid) biodegradable delivery system for intratumoral delivery of paclitaxel.
    Shikanov A; Vaisman B; Shikanov S; Domb AJ
    J Biomed Mater Res A; 2010 Mar; 92(4):1283-91. PubMed ID: 19343769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ricinoleic acid-based biopolymers.
    Teomim D; Nyska A; Domb AJ
    J Biomed Mater Res; 1999 Jun; 45(3):258-67. PubMed ID: 10397984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioerodible polyanhydrides for antibiotic drug delivery: in vivo osteomyelitis treatment in a rat model system.
    Laurencin CT; Gerhart T; Witschger P; Satcher R; Domb A; Rosenberg AE; Hanff P; Edsberg L; Hayes W; Langer R
    J Orthop Res; 1993 Mar; 11(2):256-62. PubMed ID: 8483038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel: in vitro release and in vivo toxicity.
    Shikanov A; Vaisman B; Krasko MY; Nyska A; Domb AJ
    J Biomed Mater Res A; 2004 Apr; 69(1):47-54. PubMed ID: 14999750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of novel polyanhydrides with tailored erosion mechanisms.
    Torres MP; Vogel BM; Narasimhan B; Mallapragada SK
    J Biomed Mater Res A; 2006 Jan; 76(1):102-10. PubMed ID: 16138330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of polyanhydride for local BCNU delivery carriers.
    Kim MS; Seo KS; Seong HS; Cho SH; Lee HB; Hong KD; Kim SK; Khang G
    Biomed Mater Eng; 2005; 15(3):229-38. PubMed ID: 15912003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of polyanhydrides as localized drug carriers.
    Jain JP; Modi S; Domb AJ; Kumar N
    J Control Release; 2005 Apr; 103(3):541-63. PubMed ID: 15820403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility and safety evaluation of a ricinoleic acid-based poly(ester-anhydride) copolymer after implantation in rats.
    Vaisman B; Motiei M; Nyska A; Domb AJ
    J Biomed Mater Res A; 2010 Feb; 92(2):419-31. PubMed ID: 19191319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delivering DNA from photocrosslinked, surface eroding polyanhydrides.
    Quick DJ; Macdonald KK; Anseth KS
    J Control Release; 2004 Jun; 97(2):333-43. PubMed ID: 15196760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and erosion properties of PEG-containing polyanhydrides.
    Hou S; McCauley LK; Ma PX
    Macromol Biosci; 2007 May; 7(5):620-8. PubMed ID: 17457940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of novel biodegradable polyanhydrides containing aromatic and glycol functionality for tailoring of hydrophilicity in controlled drug delivery devices.
    Vogel BM; Mallapragada SK
    Biomaterials; 2005 Mar; 26(7):721-8. PubMed ID: 15350776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low viscosity poly(trimethylene carbonate) for localized drug delivery: rheological properties and in vivo degradation.
    Timbart L; Tse MY; Pang SC; Babasola O; Amsden BG
    Macromol Biosci; 2009 Aug; 9(8):786-94. PubMed ID: 19253418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo degradation of poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) elastomers.
    Bettinger CJ; Bruggeman JP; Borenstein JT; Langer R
    J Biomed Mater Res A; 2009 Dec; 91(4):1077-88. PubMed ID: 19107786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery.
    Aryal S; Prabaharan M; Pilla S; Gong S
    Int J Biol Macromol; 2009 May; 44(4):346-52. PubMed ID: 19428465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new injectable thermogelling material: methoxy poly(ethylene glycol)-poly(sebacic acid-D,L-lactic acid)-methoxy poly(ethylene glycol) triblock co-polymer.
    Zhai Y; Deng L; Xing J; Liu Y; Zhang Q; Dong A
    J Biomater Sci Polym Ed; 2009; 20(7-8):923-34. PubMed ID: 19454160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of protein-loaded polyanhydride microspheres.
    Sun L; Zhou S; Wang W; Su Q; Li X; Weng J
    J Mater Sci Mater Med; 2009 Oct; 20(10):2035-42. PubMed ID: 19424777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.