These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 17635130)

  • 1. Structural basis of natural ligand binding and activation of the Class II G-protein-coupled secretin receptor.
    Miller LJ; Dong M; Harikumar KG; Gao F
    Biochem Soc Trans; 2007 Aug; 35(Pt 4):709-12. PubMed ID: 17635130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible endogenous agonist mechanism for the activation of secretin family G protein-coupled receptors.
    Dong M; Pinon DI; Asmann YW; Miller LJ
    Mol Pharmacol; 2006 Jul; 70(1):206-13. PubMed ID: 16531505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular approximation between residue 10 of secretin and its receptor demonstrated by photoaffinity labeling.
    Dong M; Miller LJ
    Ann N Y Acad Sci; 2006 Jul; 1070():243-7. PubMed ID: 16888174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of photoaffinity labeling to understand the molecular basis of ligand binding to the secretin receptor.
    Dong M; Miller LJ
    Ann N Y Acad Sci; 2006 Jul; 1070():248-64. PubMed ID: 16888175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular approximations between residues 21 and 23 of secretin and its receptor: development of a model for peptide docking with the amino terminus of the secretin receptor.
    Dong M; Lam PC; Gao F; Hosohata K; Pinon DI; Sexton PM; Abagyan R; Miller LJ
    Mol Pharmacol; 2007 Aug; 72(2):280-90. PubMed ID: 17475809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-chimeric analysis of selectivity of secretin and VPAC(1) receptor activation.
    Park CG; Ganguli SC; Pinon DI; Hadac EM; Miller LJ
    J Pharmacol Exp Ther; 2000 Nov; 295(2):682-8. PubMed ID: 11046106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence resonance energy transfer analysis of secretin docking to its receptor: mapping distances between residues distributed throughout the ligand pharmacophore and distinct receptor residues.
    Harikumar KG; Lam PC; Dong M; Sexton PM; Abagyan R; Miller LJ
    J Biol Chem; 2007 Nov; 282(45):32834-43. PubMed ID: 17827151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The orthosteric agonist-binding pocket in the prototypic class B G-protein-coupled secretin receptor.
    Miller LJ; Dong M
    Biochem Soc Trans; 2013 Feb; 41(1):154-8. PubMed ID: 23356276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential spatial approximation between secretin and its receptor residues in active and inactive conformations demonstrated by photoaffinity labeling.
    Dong M; Hosohata K; Pinon DI; Muthukumaraswamy N; Miller LJ
    Mol Endocrinol; 2006 Jul; 20(7):1688-98. PubMed ID: 16513792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis of secretin docking to its intact receptor using multiple photolabile probes distributed throughout the pharmacophore.
    Dong M; Lam PC; Pinon DI; Hosohata K; Orry A; Sexton PM; Abagyan R; Miller LJ
    J Biol Chem; 2011 Jul; 286(27):23888-99. PubMed ID: 21566140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Class B GPCRs: a hidden agonist within?
    Beinborn M
    Mol Pharmacol; 2006 Jul; 70(1):1-4. PubMed ID: 16632645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis and species specificity of high affinity binding of vasoactive intestinal polypeptide by the rat secretin receptor.
    Holtmann MH; Hadac EM; Ulrich CD; Miller LJ
    J Pharmacol Exp Ther; 1996 Nov; 279(2):555-60. PubMed ID: 8930157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the structure and molecular basis of ligand docking to the G protein-coupled secretin receptor using charge-modified amino-terminal agonist probes.
    Dong M; Pinon DI; Miller LJ
    Mol Endocrinol; 2005 Jul; 19(7):1821-36. PubMed ID: 15731172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive formation of oligomeric complexes between family B G protein-coupled vasoactive intestinal polypeptide and secretin receptors.
    Harikumar KG; Morfis MM; Lisenbee CS; Sexton PM; Miller LJ
    Mol Pharmacol; 2006 Jan; 69(1):363-73. PubMed ID: 16244179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial approximation between secretin residue five and the third extracellular loop of its receptor provides new insight into the molecular basis of natural agonist binding.
    Dong M; Lam PC; Pinon DI; Sexton PM; Abagyan R; Miller LJ
    Mol Pharmacol; 2008 Aug; 74(2):413-22. PubMed ID: 18467541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial approximation between two residues in the mid-region of secretin and the amino terminus of its receptor. Incorporation of seven sets of such constraints into a three-dimensional model of the agonist-bound secretin receptor.
    Dong M; Li Z; Zang M; Pinon DI; Lybrand TP; Miller LJ
    J Biol Chem; 2003 Nov; 278(48):48300-12. PubMed ID: 14500709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Cysteine Trapping to Map Spatial Approximations between Residues Contributing to the Helix N-capping Motif of Secretin and Distinct Residues within Each of the Extracellular Loops of Its Receptor.
    Dong M; Lam PC; Orry A; Sexton PM; Christopoulos A; Abagyan R; Miller LJ
    J Biol Chem; 2016 Mar; 291(10):5172-84. PubMed ID: 26740626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction among four residues distributed through the secretin pharmacophore and a focused region of the secretin receptor amino terminus.
    Dong M; Zang M; Pinon DI; Li Z; Lybrand TP; Miller LJ
    Mol Endocrinol; 2002 Nov; 16(11):2490-501. PubMed ID: 12403838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping spatial approximations between the amino terminus of secretin and each of the extracellular loops of its receptor using cysteine trapping.
    Dong M; Xu X; Ball AM; Makhoul JA; Lam PC; Pinon DI; Orry A; Sexton PM; Abagyan R; Miller LJ
    FASEB J; 2012 Dec; 26(12):5092-105. PubMed ID: 22964305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactam constraints provide insights into the receptor-bound conformation of secretin and stabilize a receptor antagonist.
    Dong M; Te JA; Xu X; Wang J; Pinon DI; Storjohann L; Bordner AJ; Miller LJ
    Biochemistry; 2011 Sep; 50(38):8181-92. PubMed ID: 21851058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.