These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 17635139)
1. Assessing GPCR activation using protein complementation: a novel technique for HTS. Eglen RM Biochem Soc Trans; 2007 Aug; 35(Pt 4):746-8. PubMed ID: 17635139 [TBL] [Abstract][Full Text] [Related]
2. New insights into GPCR function: implications for HTS. Eglen RM; Reisine T Methods Mol Biol; 2009; 552():1-13. PubMed ID: 19513638 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence resonance energy transfer to study receptor dimerization in living cells. Bader JE; Beck-Sickinger AG Methods Mol Biol; 2004; 259():335-52. PubMed ID: 15250503 [TBL] [Abstract][Full Text] [Related]
5. Functional complementation of high-efficiency resonance energy transfer: a new tool for the study of protein binding interactions in living cells. Molinari P; Casella I; Costa T Biochem J; 2008 Jan; 409(1):251-61. PubMed ID: 17868039 [TBL] [Abstract][Full Text] [Related]
6. High-throughput screening of interactions between G protein-coupled receptors and ligands using confocal optics microscopy. Zemanová L; Schenk A; Valler MJ; Nienhaus GU; Heilker R Methods Mol Biol; 2005; 305():365-84. PubMed ID: 15940007 [TBL] [Abstract][Full Text] [Related]
8. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to G protein-coupled receptor oligomerization. Comps-Agrar L; Maurel D; Rondard P; Pin JP; Trinquet E; Prézeau L Methods Mol Biol; 2011; 756():201-14. PubMed ID: 21870227 [TBL] [Abstract][Full Text] [Related]
9. Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors. Milligan G Eur J Pharm Sci; 2004 Mar; 21(4):397-405. PubMed ID: 14998570 [TBL] [Abstract][Full Text] [Related]
10. Study of G-protein-coupled receptor-protein interactions by bioluminescence resonance energy transfer. Kroeger KM; Eidne KA Methods Mol Biol; 2004; 259():323-33. PubMed ID: 15250502 [TBL] [Abstract][Full Text] [Related]
12. Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays: an approach to study G protein-coupled receptors. Yu N; Atienza JM; Bernard J; Blanc S; Zhu J; Wang X; Xu X; Abassi YA Anal Chem; 2006 Jan; 78(1):35-43. PubMed ID: 16383308 [TBL] [Abstract][Full Text] [Related]
13. From purified GPCRs to drug discovery: the promise of protein-based methodologies. Alkhalfioui F; Magnin T; Wagner R Curr Opin Pharmacol; 2009 Oct; 9(5):629-35. PubMed ID: 19443270 [TBL] [Abstract][Full Text] [Related]
14. Real-time monitoring of receptor and G-protein interactions in living cells. Galés C; Rebois RV; Hogue M; Trieu P; Breit A; Hébert TE; Bouvier M Nat Methods; 2005 Mar; 2(3):177-84. PubMed ID: 15782186 [TBL] [Abstract][Full Text] [Related]
18. Kinetic analysis of G protein-coupled receptor signaling using fluorescence resonance energy transfer in living cells. Lohse MJ; Hoffmann C; Nikolaev VO; Vilardaga JP; Bünemann M Adv Protein Chem; 2007; 74():167-88. PubMed ID: 17854658 [TBL] [Abstract][Full Text] [Related]
19. G protein-coupled receptor internalization assays in the high-content screening format. Haasen D; Schnapp A; Valler MJ; Heilker R Methods Enzymol; 2006; 414():121-39. PubMed ID: 17110190 [TBL] [Abstract][Full Text] [Related]
20. Physiological relevance of GPCR oligomerization and its impact on drug discovery. Panetta R; Greenwood MT Drug Discov Today; 2008 Dec; 13(23-24):1059-66. PubMed ID: 18824244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]