BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1763518)

  • 1. Quinine is a more potent inhibitor than quinidine in rat of the oxidative metabolic routes of methoxyphenamine which involve debrisoquine 4-hydroxylase.
    Muralidharan G; Hawes EM; McKay G; Midha KK
    Xenobiotica; 1991 Nov; 21(11):1441-50. PubMed ID: 1763518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quinidine but not quinine inhibits in man the oxidative metabolic routes of methoxyphenamine which involve debrisoquine 4-hydroxylase.
    Muralidharan G; Hawes EM; McKay G; Korchinski ED; Midha KK
    Eur J Clin Pharmacol; 1991; 41(5):471-4. PubMed ID: 1761076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective in vivo inhibition by quinidine of methoxyphenamine oxidation in rat models of human debrisoquine polymorphism.
    Muralidharan G; Midha KK; McKay G; Hawes EM; Inaba T
    Xenobiotica; 1989 Feb; 19(2):189-97. PubMed ID: 2786289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of methoxyphenamine in vitro by a CYP2D6 microsomal preparation.
    Coutts RT; Bolaji OO; Su P; Baker GB
    Drug Metab Dispos; 1994; 22(5):756-60. PubMed ID: 7835228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effects of quinidine and quinine on liver microsome oxidation enzymes in man and rat.
    Tu ZG; Zhao LL
    Zhongguo Yao Li Xue Bao; 1996 Nov; 17(6):541-4. PubMed ID: 9863152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The specificity of inhibition of debrisoquine 4-hydroxylase activity by quinidine and quinine in the rat is the inverse of that in man.
    Kobayashi S; Murray S; Watson D; Sesardic D; Davies DS; Boobis AR
    Biochem Pharmacol; 1989 Sep; 38(17):2795-9. PubMed ID: 2775304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic ring oxidation of N-n-butylamphetamine is enhanced in the rat by prior treatment with quinidine.
    Coutts RT; Baker GB; Malek F; Hussain MS
    Res Commun Chem Pathol Pharmacol; 1991 Oct; 74(1):15-24. PubMed ID: 1801101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quinidine inhibits the 7-hydroxylation of chlorpromazine in extensive metabolisers of debrisoquine.
    Muralidharan G; Cooper JK; Hawes EM; Korchinski ED; Midha KK
    Eur J Clin Pharmacol; 1996; 50(1-2):121-8. PubMed ID: 8739822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of in vitro metabolism of methoxyphenamine in rats.
    Roy SD
    Xenobiotica; 1990 Jan; 20(1):55-70. PubMed ID: 2327108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes.
    Otton SV; Crewe HK; Lennard MS; Tucker GT; Woods HF
    J Pharmacol Exp Ther; 1988 Oct; 247(1):242-7. PubMed ID: 3171974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinidine and the identification of drugs whose elimination is impaired in subjects classified as poor metabolizers of debrisoquine.
    Speirs CJ; Murray S; Boobis AR; Seddon CE; Davies DS
    Br J Clin Pharmacol; 1986 Dec; 22(6):739-43. PubMed ID: 3567021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro evidence against the oxidation of quinidine by the sparteine/debrisoquine monooxygenase of human liver.
    Otton SV; Brinn RU; Gram LF
    Drug Metab Dispos; 1988; 16(1):15-7. PubMed ID: 2894945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4-Hydroxylation of debrisoquine by human CYP1A1 and its inhibition by quinidine and quinine.
    Granvil CP; Krausz KW; Gelboin HV; Idle JR; Gonzalez FJ
    J Pharmacol Exp Ther; 2002 Jun; 301(3):1025-32. PubMed ID: 12023534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of CYP2D6 in oxidative metabolism of cinnarizine and flunarizine in human liver microsomes.
    Narimatsu S; Kariya S; Isozaki S; Ohmori S; Kitada M; Hosokawa S; Masubuchi Y; Suzuki T
    Biochem Biophys Res Commun; 1993 Jun; 193(3):1262-8. PubMed ID: 8323546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of reduced haloperidol to haloperidol: involvement of human P450IID6 (sparteine/debrisoquine monooxygenase).
    Tyndale RF; Kalow W; Inaba T
    Br J Clin Pharmacol; 1991 Jun; 31(6):655-60. PubMed ID: 1867960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of cytochrome P450 isoform activities in the female dark agouti (DA) rat: relevance to its use as a model of the CYP2D6 poor metaboliser phenotype.
    Barham HM; Lennard MS; Tucker GT
    Biochem Pharmacol; 1994 Apr; 47(8):1295-307. PubMed ID: 8185638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methoxyphenamine metabolism in rat models of human debrisoquine phenotypes.
    Roy SD; Hawes EM; McKay G; Hubbard JW; Midha KK
    Can J Physiol Pharmacol; 1985 Jul; 63(7):778-81. PubMed ID: 3876145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal cytochrome P450IID1 (debrisoquine/sparteine-type): potent inhibition of activity by (-)-cocaine and nucleotide sequence identity to human hepatic P450 gene CYP2D6.
    Tyndale RF; Sunahara R; Inaba T; Kalow W; Gonzalez FJ; Niznik HB
    Mol Pharmacol; 1991 Jul; 40(1):63-8. PubMed ID: 1857341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methoxyphenamine O-demethylase and 5-hydroxylase: a GLC-ECD assay to study their activities and their inhibition by debrisoquine and sparteine.
    Hawes EM; Roy SD; McKay G; Midha KK
    Pharmacol Ther; 1987; 33(1):73-7. PubMed ID: 3628478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that serine 304 is not a key ligand-binding residue in the active site of cytochrome P450 2D6.
    Ellis SW; Hayhurst GP; Lightfoot T; Smith G; Harlow J; Rowland-Yeo K; Larsson C; Mahling J; Lim CK; Wolf CR; Blackburn MG; Lennard MS; Tucker GT
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):565-71. PubMed ID: 10642515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.