These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 17635542)
1. Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Lin B; Hyacinthe C; Bonneville S; Braster M; Van Cappellen P; Röling WF Environ Microbiol; 2007 Aug; 9(8):1956-68. PubMed ID: 17635542 [TBL] [Abstract][Full Text] [Related]
2. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326 [TBL] [Abstract][Full Text] [Related]
3. Selection of bacteria capable of dissimilatory reduction of Fe(III) from a long-term continuous culture on molasses and their use in a microbial fuel cell. Sikora A; Wójtowicz-Sieńko J; Piela P; Zielenkiewicz U; Tomczyk-Zak K; Chojnacka A; Sikora R; Kowalczyk P; Grzesiuk E; Błaszczyk M J Microbiol Biotechnol; 2011 Mar; 21(3):305-16. PubMed ID: 21464603 [TBL] [Abstract][Full Text] [Related]
4. Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, Bacillus sp. isolated from salt flat sediments of Soap Lake. Pollock J; Weber KA; Lack J; Achenbach LA; Mormile MR; Coates JD Appl Microbiol Biotechnol; 2007 Dec; 77(4):927-34. PubMed ID: 17943280 [TBL] [Abstract][Full Text] [Related]
5. Bacteria associated with iron seeps in a sulfur-rich, neutral pH, freshwater ecosystem. Haaijer SC; Harhangi HR; Meijerink BB; Strous M; Pol A; Smolders AJ; Verwegen K; Jetten MS; Op den Camp HJ ISME J; 2008 Dec; 2(12):1231-42. PubMed ID: 18754044 [TBL] [Abstract][Full Text] [Related]
7. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
8. Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Petrie L; North NN; Dollhopf SL; Balkwill DL; Kostka JE Appl Environ Microbiol; 2003 Dec; 69(12):7467-79. PubMed ID: 14660400 [TBL] [Abstract][Full Text] [Related]
9. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Jiang H; Dong H; Yu B; Liu X; Li Y; Ji S; Zhang CL Environ Microbiol; 2007 Oct; 9(10):2603-21. PubMed ID: 17803783 [TBL] [Abstract][Full Text] [Related]
10. [Thermophilic microbial metal reduction]. Slobodkin AI Mikrobiologiia; 2005; 74(5):581-95. PubMed ID: 16315976 [TBL] [Abstract][Full Text] [Related]
11. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. Kappler A; Benz M; Schink B; Brune A FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349 [TBL] [Abstract][Full Text] [Related]
12. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes. Forget NL; Murdock SA; Juniper SK Geobiology; 2010 Dec; 8(5):417-32. PubMed ID: 20533949 [TBL] [Abstract][Full Text] [Related]
13. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment. Kikuchi S; Makita H; Konno U; Shiraishi F; Ijiri A; Takai K; Maeda M; Takahashi Y Geobiology; 2016 Jul; 14(4):374-89. PubMed ID: 27027643 [TBL] [Abstract][Full Text] [Related]
14. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition. Scheid D; Stubner S; Conrad R FEMS Microbiol Ecol; 2004 Nov; 50(2):101-10. PubMed ID: 19712368 [TBL] [Abstract][Full Text] [Related]
15. Molecular analysis of deep subsurface Cretaceous rock indicates abundant Fe(III)- and S(zero)-reducing bacteria in a sulfate-rich environment. Kovacik WP; Takai K; Mormile MR; McKinley JP; Brockman FJ; Fredrickson JK; Holben WE Environ Microbiol; 2006 Jan; 8(1):141-55. PubMed ID: 16343329 [TBL] [Abstract][Full Text] [Related]
16. Functional diversity of bacteria in a ferruginous hydrothermal sediment. Handley KM; Boothman C; Mills RA; Pancost RD; Lloyd JR ISME J; 2010 Sep; 4(9):1193-205. PubMed ID: 20410934 [TBL] [Abstract][Full Text] [Related]
17. Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Dale OR; Tobias CR; Song B Environ Microbiol; 2009 May; 11(5):1194-207. PubMed ID: 19161435 [TBL] [Abstract][Full Text] [Related]
18. Presence, distribution, and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface. Yu R; Gan P; Mackay AA; Zhang S; Smets BF FEMS Microbiol Ecol; 2010 Feb; 71(2):260-71. PubMed ID: 19909343 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites. Senko JM; Wanjugi P; Lucas M; Bruns MA; Burgos WD ISME J; 2008 Nov; 2(11):1134-45. PubMed ID: 18548117 [TBL] [Abstract][Full Text] [Related]
20. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential. Wildung RE; Li SW; Murray CJ; Krupka KM; Xie Y; Hess NJ; Roden EE FEMS Microbiol Ecol; 2004 Jul; 49(1):151-62. PubMed ID: 19712393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]