These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17635546)

  • 21. Community structure and activity of a highly dynamic and nutrient-limited hypersaline microbial mat in Um Alhool Sabkha, Qatar.
    Al-Thani R; Al-Najjar MA; Al-Raei AM; Ferdelman T; Thang NM; Al Shaikh I; Al-Ansi M; de Beer D
    PLoS One; 2014; 9(3):e92405. PubMed ID: 24658360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach.
    Fike DA; Gammon CL; Ziebis W; Orphan VJ
    ISME J; 2008 Jul; 2(7):749-59. PubMed ID: 18528418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The responses of photosynthesis and oxygen consumption to short-term changes in temperature and irradiance in a cyanobacterial mat (Ebro Delta, Spain).
    Epping E; Kühl M
    Environ Microbiol; 2000 Aug; 2(4):465-74. PubMed ID: 11234934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon pools and isotopic trends in a hypersaline cyanobacterial mat.
    Wieland A; Pape T; Möbius J; Klock JH; Michaelis W
    Geobiology; 2008 Mar; 6(2):171-86. PubMed ID: 18380879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hypersaline microbial mat from the Pacific Atoll Kiritimati: insights into composition and carbon fixation using biomarker analyses and a 13C-labeling approach.
    Bühring SI; Smittenberg RH; Sachse D; Lipp JS; Golubic S; Sachs JP; Hinrichs KU; Summons RE
    Geobiology; 2009 Jun; 7(3):308-23. PubMed ID: 19476506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of salinity and light on organic carbon and nitrogen uptake in a hypersaline microbial mat.
    Yannarell AC; Paerl HW
    FEMS Microbiol Ecol; 2007 Dec; 62(3):345-53. PubMed ID: 17916075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat.
    Mobberley JM; Lindemann SR; Bernstein HC; Moran JJ; Renslow RS; Babauta J; Hu D; Beyenal H; Nelson WC
    FEMS Microbiol Ecol; 2017 Apr; 93(4):. PubMed ID: 28334407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat.
    Steunou AS; Jensen SI; Brecht E; Becraft ED; Bateson MM; Kilian O; Bhaya D; Ward DM; Peters JW; Grossman AR; Kühl M
    ISME J; 2008 Apr; 2(4):364-78. PubMed ID: 18323780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat.
    Canfield DE; Des Marais DJ
    Geochim Cosmochim Acta; 1993 Aug; 57(16):3971-84. PubMed ID: 11537735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygen and the spatial structure of microbial communities.
    Fenchel T; Finlay B
    Biol Rev Camb Philos Soc; 2008 Nov; 83(4):553-69. PubMed ID: 18823390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy.
    Klatt JM; Meyer S; Häusler S; Macalady JL; de Beer D; Polerecky L
    ISME J; 2016 Apr; 10(4):921-33. PubMed ID: 26405833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenite-dependent photoautotrophy by an Ectothiorhodospira-dominated consortium.
    Budinoff CR; Hollibaugh JT
    ISME J; 2008 Mar; 2(3):340-3. PubMed ID: 18219283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic shifts in hypersaline microbial mats upon addition of organic substrates.
    Grötzschel S; Abed RM; de Beer D
    Environ Microbiol; 2002 Nov; 4(11):683-95. PubMed ID: 12460276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A salinity and sulfate manipulation of hypersaline microbial mats reveals stasis in the cyanobacterial community structure.
    Green SJ; Blackford C; Bucki P; Jahnke LL; Prufert-Bebout L
    ISME J; 2008 May; 2(5):457-70. PubMed ID: 18288215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correlation of bio-optical properties with photosynthetic pigment and microorganism distribution in microbial mats from Hamelin Pool, Australia.
    Fisher A; Wangpraseurt D; Larkum AWD; Johnson M; Kühl M; Chen M; Wong HL; Burns BP
    FEMS Microbiol Ecol; 2019 Jan; 95(1):. PubMed ID: 30380056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California.
    Orphan VJ; Jahnke LL; Embaye T; Turk KA; Pernthaler A; Summons RE; DES Marais DJ
    Geobiology; 2008 Aug; 6(4):376-93. PubMed ID: 18564187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative genomics provides evidence for the 3-hydroxypropionate autotrophic pathway in filamentous anoxygenic phototrophic bacteria and in hot spring microbial mats.
    Klatt CG; Bryant DA; Ward DM
    Environ Microbiol; 2007 Aug; 9(8):2067-78. PubMed ID: 17635550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of electron transfer processes affects phototrophic mat structure and activity.
    Ha PT; Renslow RS; Atci E; Reardon PN; Lindemann SR; Fredrickson JK; Call DR; Beyenal H
    Front Microbiol; 2015; 6():909. PubMed ID: 26388853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of microbial communities with electrochemical microsensors and microscale biosensors.
    Revsbech NP
    Methods Enzymol; 2005; 397():147-66. PubMed ID: 16260290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau.
    Jiang H; Dong H; Yu B; Lv G; Deng S; Wu Y; Dai M; Jiao N
    FEMS Microbiol Ecol; 2009 Feb; 67(2):268-78. PubMed ID: 19016867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.