BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 17635615)

  • 21. Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding.
    Fox AN; Pitts RJ; Robertson HM; Carlson JR; Zwiebel LJ
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14693-7. PubMed ID: 11724964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aedes Dronc: a novel ecdysone-inducible caspase in the yellow fever mosquito, Aedes aegypti.
    Cooper DM; Thi EP; Chamberlain CM; Pio F; Lowenberger C
    Insect Mol Biol; 2007 Oct; 16(5):563-72. PubMed ID: 17725799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The genetics of chemoreception in the labella and tarsi of Aedes aegypti.
    Sparks JT; Bohbot JD; Dickens JC
    Insect Biochem Mol Biol; 2014 May; 48():8-16. PubMed ID: 24582661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout.
    Bohbot J; Vogt RG
    Insect Biochem Mol Biol; 2005 Sep; 35(9):961-79. PubMed ID: 15978998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Aedes aegypti genome: a comparative perspective.
    Waterhouse RM; Wyder S; Zdobnov EM
    Insect Mol Biol; 2008 Feb; 17(1):1-8. PubMed ID: 18237279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microarray-based survey of a subset of putative olfactory genes in the mosquito Anopheles gambiae.
    Biessmann H; Nguyen QK; Le D; Walter MF
    Insect Mol Biol; 2005 Dec; 14(6):575-89. PubMed ID: 16313558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression analysis and knockdown of two antennal odorant-binding protein genes in Aedes aegypti.
    Sengul MS; Tu Z
    J Insect Sci; 2010; 10():171. PubMed ID: 21062207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular and functional characterization of a conserved odorant receptor from Aedes albopictus.
    Yan R; Xu Z; Qian J; Zhou Q; Wu H; Liu Y; Guo Y; Zhu G; Chen M
    Parasit Vectors; 2022 Jan; 15(1):43. PubMed ID: 35101118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide identification and characterization of odorant-binding protein (OBP) genes in the malaria vector Anopheles sinensis (Diptera: Culicidae).
    He X; He ZB; Zhang YJ; Zhou Y; Xian PJ; Qiao L; Chen B
    Insect Sci; 2016 Jun; 23(3):366-76. PubMed ID: 26970073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization and expression of the odorant-binding protein 7 gene in Anopheles stephensi and comparative analysis among five mosquito species.
    Sengul MS; Tu Z
    Insect Mol Biol; 2008 Dec; 17(6):631-45. PubMed ID: 18811600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and expression of odorant-binding proteins of the malaria-carrying mosquitoes Anopheles gambiae and Anopheles arabiensis.
    Li ZX; Pickett JA; Field LM; Zhou JJ
    Arch Insect Biochem Physiol; 2005 Mar; 58(3):175-89. PubMed ID: 15717318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cluster of four D7-related genes is expressed in the salivary glands of the African malaria vector Anopheles gambiae.
    ArcĂ  B; Lombardo F; Lanfrancotti A; Spanos L; Veneri M; Louis C; Coluzzi M
    Insect Mol Biol; 2002 Feb; 11(1):47-55. PubMed ID: 11841502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and characterization of odorant-binding protein 1 gene from the Asian malaria mosquito, Anopheles stephensi.
    Sengul MS; Tu Z
    Insect Mol Biol; 2010 Feb; 19(1):49-60. PubMed ID: 19909381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aedes aegypti: an emerging model for vector mosquito development.
    Clemons A; Haugen M; Flannery E; Tomchaney M; Kast K; Jacowski C; Le C; Mori A; Simanton Holland W; Sarro J; Severson DW; Duman-Scheel M
    Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.emo141. PubMed ID: 20889691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a.
    Mysore K; Flannery EM; Tomchaney M; Severson DW; Duman-Scheel M
    PLoS Negl Trop Dis; 2013; 7(5):e2215. PubMed ID: 23696908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blood meal induced microRNA regulates development and immune associated genes in the Dengue mosquito vector, Aedes aegypti.
    Hussain M; Walker T; O'Neill SL; Asgari S
    Insect Biochem Mol Biol; 2013 Feb; 43(2):146-52. PubMed ID: 23202267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aedes aegypti genomics.
    Severson DW; Knudson DL; Soares MB; Loftus BJ
    Insect Biochem Mol Biol; 2004 Jul; 34(7):715-21. PubMed ID: 15242713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Progress in mapping the yellow fever mosquito genome.
    Sharakhova MV; Sharakhov IV
    Tsitologiia; 2013; 55(4):241-3. PubMed ID: 23875456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti.
    Li S; Picimbon JF; Ji S; Kan Y; Chuanling Q; Zhou JJ; Pelosi P
    Biochem Biophys Res Commun; 2008 Aug; 372(3):464-8. PubMed ID: 18502197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular docking and simulation studies of gustatory receptor of Aedes aegypti: A potent drug target to distract host-seeking behaviour in mosquitoes.
    Gupta KK; Sethi G; Jayaraman M
    J Vector Borne Dis; 2016; 53(2):179-84. PubMed ID: 27353589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.