These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
478 related articles for article (PubMed ID: 17635806)
1. Effect of insulin-like growth factor-I on Leishmania amazonensis promastigote arginase activation and reciprocal inhibition of NOS2 pathway in macrophage in vitro. Vendrame CM; Carvalho MD; Rios FJ; Manuli ER; Petitto-Assis F; Goto H Scand J Immunol; 2007; 66(2-3):287-96. PubMed ID: 17635806 [TBL] [Abstract][Full Text] [Related]
2. Acute cysticercosis favours rapid and more severe lesions caused by Leishmania major and Leishmania mexicana infection, a role for alternatively activated macrophages. Rodríguez-Sosa M; Rivera-Montoya I; Espinoza A; Romero-Grijalva M; López-Flores R; González J; Terrazas LI Cell Immunol; 2006 Aug; 242(2):61-71. PubMed ID: 17118349 [TBL] [Abstract][Full Text] [Related]
3. Effect of the Synadenium carinatum latex lectin (ScLL) on Leishmania (Leishmania) amazonensis infection in murine macrophages. Afonso-Cardoso SR; Silva CV; Ferreira MS; Souza MA Exp Parasitol; 2011 May; 128(1):61-7. PubMed ID: 21320493 [TBL] [Abstract][Full Text] [Related]
4. Leishmanicidal activity of the Agaricus blazei Murill in different Leishmania species. Valadares DG; Duarte MC; Oliveira JS; Chávez-Fumagalli MA; Martins VT; Costa LE; Leite JP; Santoro MM; Régis WC; Tavares CA; Coelho EA Parasitol Int; 2011 Dec; 60(4):357-63. PubMed ID: 21723957 [TBL] [Abstract][Full Text] [Related]
5. In vitro evaluation of 4-phenyl-5-(4'-X-phenyl)-1,3,4-thiadiazolium-2-phenylaminide chlorides and 3[N-4'-X-phenyl]-1,2,3-oxadiazolium-5-olate derivatives on nitric oxide synthase and arginase activities of Leishmania amazonensis. Soares-Bezerra RJ; Leon LL; Echevarria A; Reis CM; Gomes-Silva L; Agostinho CG; Fernandes RA; Canto-Cavalheiro MM; Genestra MS Exp Parasitol; 2013 Sep; 135(1):50-4. PubMed ID: 23693031 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of Leishmania (Leishmania) amazonensis growth and infectivity by aureobasidin A. Tanaka AK; Valero VB; Takahashi HK; Straus AH J Antimicrob Chemother; 2007 Mar; 59(3):487-92. PubMed ID: 17242034 [TBL] [Abstract][Full Text] [Related]
8. Interleukin-2-activated natural killer cells may have a direct role in the control of Leishmania (Leishmania) amazonensis promastigote and macrophage infection. Aranha FC; Ribeiro U; Basse P; Corbett CE; Laurenti MD Scand J Immunol; 2005 Oct; 62(4):334-41. PubMed ID: 16253120 [TBL] [Abstract][Full Text] [Related]
9. Expression of hypoxia-inducible factor 1alpha in mononuclear phagocytes infected with Leishmania amazonensis. Degrossoli A; Bosetto MC; Lima CB; Giorgio S Immunol Lett; 2007 Dec; 114(2):119-25. PubMed ID: 17983667 [TBL] [Abstract][Full Text] [Related]
11. Leishmania chagasi: cytotoxic effect of infected macrophages on parenchymal liver cells. Dias Costa J; de Nazareth Meirelles M; Eduardo Pereira Velloso C; Porrozzi R Exp Parasitol; 2007 Dec; 117(4):390-8. PubMed ID: 17719578 [TBL] [Abstract][Full Text] [Related]
12. Leishmania-induced tyrosine phosphorylation in the host macrophage and its implication to infection. Martiny A; Vannier-Santos MA; Borges VM; Meyer-Fernandes JR; Assreuy J; Cunha e Silva NL; de Souza W Eur J Cell Biol; 1996 Oct; 71(2):206-15. PubMed ID: 8905299 [TBL] [Abstract][Full Text] [Related]
13. Kinetoplastid membrane protein-11 exacerbates infection with Leishmania amazonensis in murine macrophages. Lacerda DI; Cysne-Finkelstein L; Nunes MP; De-Luca PM; Genestra Mda S; Leon LL; Berrêdo-Pinho M; Mendonça-Lima L; Matos DC; Medeiros MA; Mendonça SC Mem Inst Oswaldo Cruz; 2012 Mar; 107(2):238-45. PubMed ID: 22415264 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of in vivo leishmanicidal mechanisms by tempol: nitric oxide down-regulation and oxidant scavenging. Linares E; Giorgio S; Augusto O Free Radic Biol Med; 2008 Apr; 44(8):1668-76. PubMed ID: 18313408 [TBL] [Abstract][Full Text] [Related]
15. Effect of hypoxia on macrophage infection by Leishmania amazonensis. Colhone MC; Arrais-Silva WW; Picoli C; Giorgio S J Parasitol; 2004 Jun; 90(3):510-5. PubMed ID: 15270094 [TBL] [Abstract][Full Text] [Related]
16. Leishmania amazonensis infection does not inhibit systemic nitric oxide levels elicited by lipopolysaccharide in vivo. Linares E; Augusto O; Barão SC; Giorgio S J Parasitol; 2000 Feb; 86(1):78-82. PubMed ID: 10701568 [TBL] [Abstract][Full Text] [Related]
17. Leishmania species: evidence for transglutaminase activity and its role in parasite proliferation. Brobey RK; Soong L Exp Parasitol; 2006 Oct; 114(2):94-102. PubMed ID: 16620812 [TBL] [Abstract][Full Text] [Related]
18. Insulin-like growth factor-I induces arginase activity in Leishmania amazonensis amastigote-infected macrophages through a cytokine-independent mechanism. Vendrame CM; Carvalho MD; Tempone AG; Goto H Mediators Inflamm; 2014; 2014():475919. PubMed ID: 25294956 [TBL] [Abstract][Full Text] [Related]
19. Leishmania mexicana promastigotes inhibit macrophage IL-12 production via TLR-4 dependent COX-2, iNOS and arginase-1 expression. Shweash M; Adrienne McGachy H; Schroeder J; Neamatallah T; Bryant CE; Millington O; Mottram JC; Alexander J; Plevin R Mol Immunol; 2011 Sep; 48(15-16):1800-8. PubMed ID: 21664694 [TBL] [Abstract][Full Text] [Related]
20. The scavenger receptor MARCO is involved in Leishmania major infection by CBA/J macrophages. Gomes IN; Palma LC; Campos GO; Lima JG; DE Almeida TF; DE Menezes JP; Ferreira CA; Santos RR; Buck GA; Manque PA; Ozaki LS; Probst CM; DE Freitas LA; Krieger MA; Veras PS Parasite Immunol; 2009 Apr; 31(4):188-98. PubMed ID: 19292770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]