BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 1763591)

  • 1. Gas flow distribution in distal high frequency jet ventilation and lung thorax compliance.
    Spoelstra AJ; Tamsma TJ
    Acta Anaesthesiol Scand; 1991 Nov; 35(8):717-24. PubMed ID: 1763591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive value of FRC and respiratory compliance on pulmonary gas exchange induced by high frequency jet ventilation in humans.
    Pittet JF; Morel DR; Bachmann M; Forster A; Suter PM
    Br J Anaesth; 1990 Apr; 64(4):460-8. PubMed ID: 2185815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High frequency jet ventilation: the influence of gas flow, inspiration time and ventilatory frequency on gas transport in healthy anaesthetized dogs.
    Spoelstra AJ; Tamsma TJ
    Br J Anaesth; 1987 Oct; 59(10):1298-308. PubMed ID: 3118928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas flow distribution and tidal volume during distal high frequency jet ventilation in dogs.
    Tamsma TJ; Spoelstra AJ
    Acta Anaesthesiol Scand Suppl; 1989; 90():75-8. PubMed ID: 2929266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between resonance and gas exchange during high frequency jet ventilation.
    Lin ES; Jones MJ; Mottram SD; Smith BE; Smith G
    Br J Anaesth; 1990 Apr; 64(4):453-9. PubMed ID: 2334620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High frequency jet ventilation and gas trapping.
    Spackman DR; Kellow N; White SA; Seed PT; Feneck RO
    Br J Anaesth; 1999 Nov; 83(5):708-14. PubMed ID: 10690131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-frequency jet ventilation during oleic-acid induced pulmonary oedema.
    Hachenberg T; Wendt M; Hermeyer G; Ludwig E; Meyer J; Lawin P
    Intensive Care Med; 1989; 15(2):105-10. PubMed ID: 2654240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiopulmonary effects of positive pressure ventilation during acute lung injury.
    Romand JA; Shi W; Pinsky MR
    Chest; 1995 Oct; 108(4):1041-8. PubMed ID: 7555117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of high-frequency jet ventilation and synchronised intermittent mandatory ventilation in preterm lambs.
    Musk GC; Polglase GR; Bunnell JB; Nitsos I; Tingay D; Pillow JJ
    Pediatr Pulmonol; 2015 Dec; 50(12):1286-93. PubMed ID: 25823397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High frequency jet ventilation: intraoperative application in infants.
    Greenspan JS; Davis DA; Russo P; Antunes MJ; Spitzer AR; Wolfson MR
    Pediatr Pulmonol; 1994 Mar; 17(3):155-60. PubMed ID: 8196995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biologic variability in mechanical ventilation rate and tidal volume does not improve oxygenation or lung mechanics in canine oleic acid lung injury.
    Nam AJ; Brower RG; Fessler HE; Simon BA
    Am J Respir Crit Care Med; 2000 Jun; 161(6):1797-804. PubMed ID: 10852747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Animal experiment studies of high frequency jet ventilation with a newly developed pneumatically controlled respirator].
    Klein U; Claussen D; Schubert H; Zieger M
    Z Erkr Atmungsorgane; 1987; 169(3):283-90. PubMed ID: 3128015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency dependence of lung volume changes during superimposed high-frequency jet ventilation and high-frequency jet ventilation.
    Sütterlin R; Priori R; Larsson A; LoMauro A; Frykholm P; Aliverti A
    Br J Anaesth; 2014 Jan; 112(1):141-9. PubMed ID: 23963714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of changes in respiratory mechanics during partial liquid ventilation using jet pulses.
    Schmalisch G; Schmidt M; Proquitté H; Foitzik B; Rüdiger M; Wauer RR
    Crit Care Med; 2003 May; 31(5):1435-41. PubMed ID: 12771615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic hyperinflation: comparison of jet ventilation versus conventional ventilation in patients with severe end-stage obstructive lung disease.
    Myles PS; Evans AB; Madder H; Weeks AM
    Anaesth Intensive Care; 1997 Oct; 25(5):471-5. PubMed ID: 9352757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency jet ventilation improves gas exchange in extremely immature infants with evolving chronic lung disease.
    Plavka R; Dokoupilová M; Pazderová L; Kopecký P; Sebron V; Zapadlo M; Keszler M
    Am J Perinatol; 2006 Nov; 23(8):467-72. PubMed ID: 17094040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic and respiratory effects of transtracheal high-frequency jet ventilation during difficult intubation.
    Nakatsuka M; MacLeod AD
    J Clin Anesth; 1992; 4(4):321-4. PubMed ID: 1419013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure support ventilation in patients with acute lung injury.
    Cereda M; Foti G; Marcora B; Gili M; Giacomini M; Sparacino ME; Pesenti A
    Crit Care Med; 2000 May; 28(5):1269-75. PubMed ID: 10834664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positive pressure ventilation with the open lung concept optimizes gas exchange and reduces ventilator-induced lung injury in newborn piglets.
    van Kaam AH; de Jaegere A; Haitsma JJ; Van Aalderen WM; Kok JH; Lachmann B
    Pediatr Res; 2003 Feb; 53(2):245-53. PubMed ID: 12538782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-frequency jet ventilation shortened the duration of gas embolization during laparoscopic liver resection in a porcine model.
    Fors D; Eiriksson K; Waage A; Arvidsson D; Rubertsson S
    Br J Anaesth; 2014 Sep; 113(3):484-90. PubMed ID: 24727828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.