These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Secondary structure prediction for aligned RNA sequences. Hofacker IL; Fekete M; Stadler PF J Mol Biol; 2002 Jun; 319(5):1059-66. PubMed ID: 12079347 [TBL] [Abstract][Full Text] [Related]
4. Internucleotide movements during formation of 16 S rRNA-rRNA photocrosslinks and their connection to the 30 S subunit conformational dynamics. Huggins W; Ghosh SK; Nanda K; Wollenzien P J Mol Biol; 2005 Nov; 354(2):358-74. PubMed ID: 16242153 [TBL] [Abstract][Full Text] [Related]
5. Using multiple alignments and phylogenetic trees to detect RNA secondary structure. Gulko B; Haussler D Pac Symp Biocomput; 1996; ():350-67. PubMed ID: 9390243 [TBL] [Abstract][Full Text] [Related]
6. Empirical models for substitution in ribosomal RNA. Smith AD; Lui TW; Tillier ER Mol Biol Evol; 2004 Mar; 21(3):419-27. PubMed ID: 14660689 [TBL] [Abstract][Full Text] [Related]
7. Base pairing constraints drive structural epistasis in ribosomal RNA sequences. Dutheil JY; Jossinet F; Westhof E Mol Biol Evol; 2010 Aug; 27(8):1868-76. PubMed ID: 20211929 [TBL] [Abstract][Full Text] [Related]
8. RNA secondary structure prediction based on free energy and phylogenetic analysis. Juan V; Wilson C J Mol Biol; 1999 Jun; 289(4):935-47. PubMed ID: 10369773 [TBL] [Abstract][Full Text] [Related]
9. Variation patterns of the mitochondrial 16S rRNA gene with secondary structure constraints and their application to phylogeny of cyprinine fishes (Teleostei: Cypriniformes). Li J; Wang X; Kong X; Zhao K; He S; Mayden RL Mol Phylogenet Evol; 2008 May; 47(2):472-87. PubMed ID: 18378468 [TBL] [Abstract][Full Text] [Related]
10. Evidence for adaptive selection acting on the tRNA and rRNA genes of human mitochondrial DNA. Ruiz-Pesini E; Wallace DC Hum Mutat; 2006 Nov; 27(11):1072-81. PubMed ID: 16947981 [TBL] [Abstract][Full Text] [Related]
11. Towards an assessment of character interdependence in avian RNA phylogenetics: a general secondary structure model for the avian mitochondrial 16S rRNA. do Amaral FR; Sheldon FH; Wajntal A Mol Phylogenet Evol; 2010 Jul; 56(1):498-506. PubMed ID: 20302954 [No Abstract] [Full Text] [Related]
12. Evolution of RNA editing sites in the mitochondrial small subunit rRNA of the Myxomycota. Krishnan U; Barsamian A; Miller DL Methods Enzymol; 2007; 424():197-220. PubMed ID: 17662842 [TBL] [Abstract][Full Text] [Related]
13. Compensatory neutral mutations and the evolution of RNA. Higgs PG Genetica; 1998; 102-103(1-6):91-101. PubMed ID: 9720274 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of translation based on intersubunit complementarities of ribosomal RNAs and tRNAs. Nagano K; Nagano N J Theor Biol; 2007 Apr; 245(4):644-68. PubMed ID: 17196221 [TBL] [Abstract][Full Text] [Related]
15. An effect of 16S rRNA intercistronic variability on coevolutionary analysis in symbiotic bacteria: molecular phylogeny of Arsenophonus triatominarum. Sorfová P; Skeríková A; Hypsa V Syst Appl Microbiol; 2008 Jun; 31(2):88-100. PubMed ID: 18485654 [TBL] [Abstract][Full Text] [Related]
16. A model-based approach for detecting coevolving positions in a molecule. Dutheil J; Pupko T; Jean-Marie A; Galtier N Mol Biol Evol; 2005 Sep; 22(9):1919-28. PubMed ID: 15944445 [TBL] [Abstract][Full Text] [Related]
17. An evolutionary model for protein-coding regions with conserved RNA structure. Pedersen JS; Forsberg R; Meyer IM; Hein J Mol Biol Evol; 2004 Oct; 21(10):1913-22. PubMed ID: 15229291 [TBL] [Abstract][Full Text] [Related]
18. In silico sequence evolution with site-specific interactions along phylogenetic trees. Gesell T; von Haeseler A Bioinformatics; 2006 Mar; 22(6):716-22. PubMed ID: 16332711 [TBL] [Abstract][Full Text] [Related]
19. [Region of intermolecular complementarity in Escherichia coli 16S rRNA, mRNA, and tRNA molecules]. Shabalina SA Mol Biol (Mosk); 2002; 36(3):460-5. PubMed ID: 12068631 [TBL] [Abstract][Full Text] [Related]