These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 17636252)
1. The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. Lee J; Kumagai A; Dunphy WG J Biol Chem; 2007 Sep; 282(38):28036-44. PubMed ID: 17636252 [TBL] [Abstract][Full Text] [Related]
2. Interaction between Rad9-Hus1-Rad1 and TopBP1 activates ATR-ATRIP and promotes TopBP1 recruitment to sites of UV-damage. Ohashi E; Takeishi Y; Ueda S; Tsurimoto T DNA Repair (Amst); 2014 Sep; 21():1-11. PubMed ID: 25091155 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation of Chk1 by ATM- and Rad3-related (ATR) in Xenopus egg extracts requires binding of ATRIP to ATR but not the stable DNA-binding or coiled-coil domains of ATRIP. Kim SM; Kumagai A; Lee J; Dunphy WG J Biol Chem; 2005 Nov; 280(46):38355-64. PubMed ID: 16186122 [TBL] [Abstract][Full Text] [Related]
4. TopBP1 activates the ATR-ATRIP complex. Kumagai A; Lee J; Yoo HY; Dunphy WG Cell; 2006 Mar; 124(5):943-55. PubMed ID: 16530042 [TBL] [Abstract][Full Text] [Related]
5. The Mre11-Rad50-Nbs1 complex mediates activation of TopBP1 by ATM. Yoo HY; Kumagai A; Shevchenko A; Shevchenko A; Dunphy WG Mol Biol Cell; 2009 May; 20(9):2351-60. PubMed ID: 19279141 [TBL] [Abstract][Full Text] [Related]
6. A role for the MRN complex in ATR activation via TOPBP1 recruitment. Duursma AM; Driscoll R; Elias JE; Cimprich KA Mol Cell; 2013 Apr; 50(1):116-22. PubMed ID: 23582259 [TBL] [Abstract][Full Text] [Related]
7. Phosphorylation of Xenopus Rad1 and Hus1 defines a readout for ATR activation that is independent of Claspin and the Rad9 carboxy terminus. Lupardus PJ; Cimprich KA Mol Biol Cell; 2006 Apr; 17(4):1559-69. PubMed ID: 16436514 [TBL] [Abstract][Full Text] [Related]
8. TopBP1 and DNA polymerase-alpha directly recruit the 9-1-1 complex to stalled DNA replication forks. Yan S; Michael WM J Cell Biol; 2009 Mar; 184(6):793-804. PubMed ID: 19289795 [TBL] [Abstract][Full Text] [Related]
9. RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling. Lindsey-Boltz LA; Kemp MG; Capp C; Sancar A Cell Cycle; 2015; 14(1):99-108. PubMed ID: 25602520 [TBL] [Abstract][Full Text] [Related]
10. Importin β-dependent nuclear import of TopBP1 in ATR-Chk1 checkpoint in Xenopus egg extracts. Bai L; Michael WM; Yan S Cell Signal; 2014 May; 26(5):857-67. PubMed ID: 24440306 [TBL] [Abstract][Full Text] [Related]
11. The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling. Xu X; Vaithiyalingam S; Glick GG; Mordes DA; Chazin WJ; Cortez D Mol Cell Biol; 2008 Dec; 28(24):7345-53. PubMed ID: 18936170 [TBL] [Abstract][Full Text] [Related]
12. Rad17 plays a central role in establishment of the interaction between TopBP1 and the Rad9-Hus1-Rad1 complex at stalled replication forks. Lee J; Dunphy WG Mol Biol Cell; 2010 Mar; 21(6):926-35. PubMed ID: 20110345 [TBL] [Abstract][Full Text] [Related]
13. CtIP interacts with TopBP1 and Nbs1 in the response to double-stranded DNA breaks (DSBs) in Xenopus egg extracts. Ramírez-Lugo JS; Yoo HY; Yoon SJ; Dunphy WG Cell Cycle; 2011 Feb; 10(3):469-80. PubMed ID: 21263215 [TBL] [Abstract][Full Text] [Related]
14. Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses. Yoo HY; Shevchenko A; Shevchenko A; Dunphy WG J Biol Chem; 2004 Dec; 279(51):53353-64. PubMed ID: 15448142 [TBL] [Abstract][Full Text] [Related]
15. Ataxia-telangiectasia mutated (ATM)-dependent activation of ATR occurs through phosphorylation of TopBP1 by ATM. Yoo HY; Kumagai A; Shevchenko A; Shevchenko A; Dunphy WG J Biol Chem; 2007 Jun; 282(24):17501-6. PubMed ID: 17446169 [TBL] [Abstract][Full Text] [Related]
16. Resection of DNA double-strand breaks activates Mre11-Rad50-Nbs1- and Rad9-Hus1-Rad1-dependent mechanisms that redundantly promote ATR checkpoint activation and end processing in Xenopus egg extracts. Tatsukawa K; Sakamoto R; Kawasoe Y; Kubota Y; Tsurimoto T; Takahashi TS; Ohashi E Nucleic Acids Res; 2024 Apr; 52(6):3146-3163. PubMed ID: 38349040 [TBL] [Abstract][Full Text] [Related]
17. Regulation of ATRIP protein abundance by RAD9 in the DNA damage repair pathway. Peng XJ; Liu SJ; Bao CM; Liu YZ; Xie HW; Cai YH; Li BM; Hang HY; Ding X Cell Mol Biol (Noisy-le-grand); 2015 Dec; 61(8):31-6. PubMed ID: 26667770 [TBL] [Abstract][Full Text] [Related]
19. Delineation of a minimal topoisomerase II binding protein 1 for regulated activation of ATR at DNA double-strand breaks. Ruis K; Huynh O; Montales K; Barr NA; Michael WM J Biol Chem; 2022 Jul; 298(7):101992. PubMed ID: 35490781 [TBL] [Abstract][Full Text] [Related]
20. Casein kinase 2-dependent phosphorylation of human Rad9 mediates the interaction between human Rad9-Hus1-Rad1 complex and TopBP1. Takeishi Y; Ohashi E; Ogawa K; Masai H; Obuse C; Tsurimoto T Genes Cells; 2010 Jun; 15(7):761-71. PubMed ID: 20545769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]