These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
586 related articles for article (PubMed ID: 17636457)
1. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. Garg A; Balthasar JP J Pharmacokinet Pharmacodyn; 2007 Oct; 34(5):687-709. PubMed ID: 17636457 [TBL] [Abstract][Full Text] [Related]
2. Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia. Hansen RJ; Balthasar JP J Pharm Sci; 2003 Jun; 92(6):1206-15. PubMed ID: 12761810 [TBL] [Abstract][Full Text] [Related]
3. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. Shah DK; Betts AM J Pharmacokinet Pharmacodyn; 2012 Feb; 39(1):67-86. PubMed ID: 22143261 [TBL] [Abstract][Full Text] [Related]
4. The effect of the neonatal Fc receptor on human IgG biodistribution in mice. Chen N; Wang W; Fauty S; Fang Y; Hamuro L; Hussain A; Prueksaritanont T MAbs; 2014; 6(2):502-8. PubMed ID: 24492305 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the influence of FcRn on the distribution of IgG to the brain. Garg A; Balthasar JP AAPS J; 2009 Sep; 11(3):553-7. PubMed ID: 19636712 [TBL] [Abstract][Full Text] [Related]
6. Application of Physiologically Based Pharmacokinetic Modeling to Predict the Effects of FcRn Inhibitors in Mice, Rats, and Monkeys. Li T; Balthasar JP J Pharm Sci; 2019 Jan; 108(1):701-713. PubMed ID: 30423340 [TBL] [Abstract][Full Text] [Related]
7. Model-Based Assessment of the Contribution of Monocytes and Macrophages to the Pharmacokinetics of Monoclonal Antibodies. Malik PRV; Hamadeh A; Edginton AN Pharm Res; 2022 Feb; 39(2):239-250. PubMed ID: 35118567 [TBL] [Abstract][Full Text] [Related]
8. Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor. Hansen RJ; Balthasar JP Thromb Haemost; 2002 Dec; 88(6):898-9. PubMed ID: 12529736 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a catenary PBPK model for predicting the in vivo disposition of mAbs engineered for high-affinity binding to FcRn. Chen Y; Balthasar JP AAPS J; 2012 Dec; 14(4):850-9. PubMed ID: 22956476 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the role of FcγR and FcRn in mAb distribution to the brain. Abuqayyas L; Balthasar JP Mol Pharm; 2013 May; 10(5):1505-13. PubMed ID: 22838637 [TBL] [Abstract][Full Text] [Related]
11. Development and Evaluation of a Physiologically Based Pharmacokinetic Model for Predicting the Effects of Anti-FcRn Therapy on the Disposition of Endogenous IgG in Humans. Li T; Balthasar JP J Pharm Sci; 2019 Jan; 108(1):714-724. PubMed ID: 30471293 [TBL] [Abstract][Full Text] [Related]
12. Physiologically based pharmacokinetic (PBPK) model that describes enhanced FcRn-dependent distribution of monoclonal antibodies (mAbs) by pI-engineering in mice. Naoi S; Yamane M; Nemoto T; Kato M; Saito R; Tachibana T Drug Metab Pharmacokinet; 2023 Dec; 53():100506. PubMed ID: 38029470 [TBL] [Abstract][Full Text] [Related]
13. Impact of altered endogenous IgG on unspecific mAb clearance. Fuhrmann S; Kloft C; Huisinga W J Pharmacokinet Pharmacodyn; 2017 Aug; 44(4):351-374. PubMed ID: 28439684 [TBL] [Abstract][Full Text] [Related]
14. Computer-assembled cross-species/cross-modalities two-pore physiologically based pharmacokinetic model for biologics in mice and rats. Sepp A; Meno-Tetang G; Weber A; Sanderson A; Schon O; Berges A J Pharmacokinet Pharmacodyn; 2019 Aug; 46(4):339-359. PubMed ID: 31079322 [TBL] [Abstract][Full Text] [Related]
15. A minimal physiologically based pharmacokinetic model to investigate FcRn-mediated monoclonal antibody salvage: Effects of K Maas BM; Cao Y MAbs; 2018; 10(8):1322-1331. PubMed ID: 30130450 [TBL] [Abstract][Full Text] [Related]
16. Pharmacokinetic effects of 4C9, an anti-FcRn antibody, in rats: implications for the use of FcRn inhibitors for the treatment of humoral autoimmune and alloimmune conditions. Getman KE; Balthasar JP J Pharm Sci; 2005 Apr; 94(4):718-29. PubMed ID: 15682382 [TBL] [Abstract][Full Text] [Related]
17. Contribution of FcRn binding to intestinal uptake of IgG in suckling rat pups and human FcRn-transgenic mice. Kliwinski C; Cooper PR; Perkinson R; Mabus JR; Tam SH; Wilkinson TM; Giles-Komar J; Scallon B; Powers GD; Hornby PJ Am J Physiol Gastrointest Liver Physiol; 2013 Feb; 304(3):G262-70. PubMed ID: 23220220 [TBL] [Abstract][Full Text] [Related]
18. The neonatal Fc receptor (FcRn) is not required for IVIg or anti-CD44 monoclonal antibody-mediated amelioration of murine immune thrombocytopenia. Crow AR; Suppa SJ; Chen X; Mott PJ; Lazarus AH Blood; 2011 Dec; 118(24):6403-6. PubMed ID: 22001393 [TBL] [Abstract][Full Text] [Related]
19. Are endosomal trafficking parameters better targets for improving mAb pharmacokinetics than FcRn binding affinity? Gurbaxani B; Dostalek M; Gardner I Mol Immunol; 2013 Dec; 56(4):660-74. PubMed ID: 23917469 [TBL] [Abstract][Full Text] [Related]
20. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies. Stracke J; Emrich T; Rueger P; Schlothauer T; Kling L; Knaupp A; Hertenberger H; Wolfert A; Spick C; Lau W; Drabner G; Reiff U; Koll H; Papadimitriou A MAbs; 2014; 6(5):1229-42. PubMed ID: 25517308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]