BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 17636877)

  • 1. Performance of SU-8 microchips as separation devices and comparison with glass microchips.
    Sikanen T; Heikkilä L; Tuomikoski S; Ketola RA; Kostiainen R; Franssila S; Kotiaho T
    Anal Chem; 2007 Aug; 79(16):6255-63. PubMed ID: 17636877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully microfabricated and integrated SU-8-based capillary electrophoresis-electrospray ionization microchips for mass spectrometry.
    Sikanen T; Tuomikoski S; Ketola RA; Kostiainen R; Franssila S; Kotiaho T
    Anal Chem; 2007 Dec; 79(23):9135-44. PubMed ID: 17973354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of SU-8 based microchip electrophoresis with integrated electrochemical detection for neurotransmitters.
    Castaño-Alvarez M; Fernández-Abedul MT; Costa-García A; Agirregabiria M; Fernández LJ; Ruano-López JM; Barredo-Presa B
    Talanta; 2009 Nov; 80(1):24-30. PubMed ID: 19782188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rejuvenation method for poly(N,N-dimethylacrylamide)-coated glass microfluidic chips.
    Ma R; Crabtree HJ; Backhouse CJ
    Electrophoresis; 2005 Jul; 26(14):2692-700. PubMed ID: 15981296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis.
    Liu J; Lee ML
    Electrophoresis; 2006 Sep; 27(18):3533-46. PubMed ID: 16927422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic coating of SU-8 microfluidic chips with phospholipid disks.
    Sikanen T; Wiedmer SK; Heikkilä L; Franssila S; Kostiainen R; Kotiaho T
    Electrophoresis; 2010 Aug; 31(15):2566-74. PubMed ID: 20603829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of SU-8-based capillary electrophoresis-electrospray ionization mass spectrometry microfluidic chips for the analysis of human cell lysates.
    Nordman N; Sikanen T; Aura S; Tuomikoski S; Vuorensola K; Kotiaho T; Franssila S; Kostiainen R
    Electrophoresis; 2010 Nov; 31(22):3745-53. PubMed ID: 21077242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid ceramic polymers: new, nonbiofouling, and optically transparent materials for microfluidics.
    Sikanen T; Aura S; Heikkilä L; Kotiaho T; Franssila S; Kostiainen R
    Anal Chem; 2010 May; 82(9):3874-82. PubMed ID: 20394408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.
    Lin CH; Lee GB; Fu LM; Chen SH
    Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography.
    Gustafsson O; Mogensen KB; Kutter JP
    Electrophoresis; 2008 Aug; 29(15):3145-52. PubMed ID: 18618461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and testing of high-performance detection sensor for capillary electrophoresis microchips.
    Fu LM; Lee CY; Liao MH; Lin CH
    Biomed Microdevices; 2008 Feb; 10(1):73-80. PubMed ID: 17680365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance.
    Shadpour H; Musyimi H; Chen J; Soper SA
    J Chromatogr A; 2006 Apr; 1111(2):238-51. PubMed ID: 16569584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary zone electrophoresis of amino acids on a hybrid poly(dimethylsiloxane)-glass chip.
    Mourzina Y; Steffen A; Kalyagin D; Carius R; Offenhäusser A
    Electrophoresis; 2005 May; 26(9):1849-60. PubMed ID: 15719361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microchip laser-induced fluorescence detection of proteins at submicrogram per milliliter levels mediated by dynamic labeling under pseudonative conditions.
    Giordano BC; Jin L; Couch AJ; Ferrance JP; Landers JP
    Anal Chem; 2004 Aug; 76(16):4705-14. PubMed ID: 15307780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and fabrication of integrated solid-phase extraction-zone electrophoresis microchip.
    Tuomikoski S; Virkkala N; Rovio S; Hokkanen A; Sirén H; Franssila S
    J Chromatogr A; 2006 Apr; 1111(2):258-66. PubMed ID: 16257410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wall coating for capillary electrophoresis on microchips.
    Dolník V
    Electrophoresis; 2004 Nov; 25(21-22):3589-601. PubMed ID: 15565710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of capillary zone electrophoresis performance of powder-blasted and hydrogen fluoride-etched microchannels in glass.
    Pu QS; Luttge R; Gardeniers HJ; van den Berg A
    Electrophoresis; 2003 Jan; 24(1-2):162-71. PubMed ID: 12652587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modification of the channels of poly(dimethylsiloxane) microfluidic chips with polyacrylamide for fast electrophoretic separations of proteins.
    Xiao D; Le TV; Wirth MJ
    Anal Chem; 2004 Apr; 76(7):2055-61. PubMed ID: 15053671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microchip capillary electrophoresis-electrospray ionization-mass spectrometry of intact proteins using uncoated Ormocomp microchips.
    Sikanen T; Aura S; Franssila S; Kotiaho T; Kostiainen R
    Anal Chim Acta; 2012 Jan; 711():69-76. PubMed ID: 22152798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips.
    Kelly RT; Li Y; Woolley AT
    Anal Chem; 2006 Apr; 78(8):2565-70. PubMed ID: 16615765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.