BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 17636973)

  • 21. Systematic effect of benzo-annelation on oxo-hydroxy tautomerism of heterocyclic compounds. Experimental matrix-isolation and theoretical study.
    Gerega A; Lapinski L; Nowak MJ; Furmanchuk A; Leszczynski J
    J Phys Chem A; 2007 Jun; 111(23):4934-43. PubMed ID: 17511432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of enzyme-activated 1,2-dioxetane chemiluminescence in membrane-based assays.
    Kobos RK; Blue BA; Robertson CW; Kielhorn LA
    Anal Biochem; 1995 Jan; 224(1):128-33. PubMed ID: 7710059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and characterization of thermochemiluminescent acridine-containing 1,2-dioxetanes as promising ultrasensitive labels in bioanalysis.
    Di Fusco M; Quintavalla A; Trombini C; Lombardo M; Roda A; Guardigli M; Mirasoli M
    J Org Chem; 2013 Nov; 78(22):11238-46. PubMed ID: 24160842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solvent cage effects: basis of a general mechanism for efficient chemiluminescence.
    Bastos EL; da Silva SM; Baader WJ
    J Org Chem; 2013 May; 78(9):4432-9. PubMed ID: 23551289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How Do Methyl Groups Enhance the Triplet Chemiexcitation Yield of Dioxetane?
    Vacher M; Farahani P; Valentini A; Frutos LM; Karlsson HO; Fdez Galván I; Lindh R
    J Phys Chem Lett; 2017 Aug; 8(16):3790-3794. PubMed ID: 28749694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes of structure and energy on the route from dioxetane to carbonyl products. A quantum chemical study.
    Vasil'ev RF
    J Biolumin Chemilumin; 1998; 13(2):69-74. PubMed ID: 9633009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ortho-Chlorination of phenoxy 1,2-dioxetane yields superior chemiluminescent probes for in vitro and in vivo imaging.
    Eilon-Shaffer T; Roth-Konforti M; Eldar-Boock A; Satchi-Fainaro R; Shabat D
    Org Biomol Chem; 2018 Mar; 16(10):1708-1712. PubMed ID: 29451576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for the Formation of 1,2-Dioxetane as a High-Energy Intermediate and Possible Chemiexcitation Pathways in the Chemiluminescence of Lophine Peroxides.
    Boaro A; Reis RA; Silva CS; Melo DU; Pinto AGGC; Bartoloni FH
    J Org Chem; 2021 May; 86(9):6633-6647. PubMed ID: 33876635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of activated chemiluminescence of cyclic peroxides: 1,2-dioxetanes and 1,2-dioxetanones.
    Augusto FA; Francés-Monerris A; Fdez Galván I; Roca-Sanjuán D; Bastos EL; Baader WJ; Lindh R
    Phys Chem Chem Phys; 2017 Feb; 19(5):3955-3962. PubMed ID: 28106183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dioxetane scission products unchanged by mechanical force.
    Clough JM; Sijbesma RP
    Chemphyschem; 2014 Nov; 15(16):3565-71. PubMed ID: 25145812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain.
    Chen Y; Spiering AJ; Karthikeyan S; Peters GW; Meijer EW; Sijbesma RP
    Nat Chem; 2012 Jun; 4(7):559-62. PubMed ID: 22717441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of efficient firefly bioluminescence via adiabatic transition state and seam of sloped conical intersection.
    Chung LW; Hayashi S; Lundberg M; Nakatsu T; Kato H; Morokuma K
    J Am Chem Soc; 2008 Oct; 130(39):12880-1. PubMed ID: 18767834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum chemical study of the thermal decomposition of o-quinone methide (6-methylene-2,4-cyclohexadien-1-one).
    Silva Gd; Bozzelli JW
    J Phys Chem A; 2007 Aug; 111(32):7987-94. PubMed ID: 17645323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photodissociation mechanism of methyl nitrate. A study with the multistate second-order multiconfigurational perturbation theory.
    Soto J; Peláez D; Otero JC; Avila FJ; Arenas JF
    Phys Chem Chem Phys; 2009 Apr; 11(15):2631-9. PubMed ID: 19421519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical investigation of anthracene-9,10-endoperoxide vertical singlet and triplet excitation spectra.
    Corral I; González L
    J Comput Chem; 2008 Sep; 29(12):1982-91. PubMed ID: 18366030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamical Insights into the Decomposition of 1,2-Dioxetane.
    Vacher M; Brakestad A; Karlsson HO; Fdez Galván I; Lindh R
    J Chem Theory Comput; 2017 Jun; 13(6):2448-2457. PubMed ID: 28437611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnesium methoxide-induced chemiluminescent decomposition of bicyclic dioxetanes bearing a 2'-alkoxy-2-hydroxy-1,1'-binaphthyl-7-yl moiety.
    Kawashima H; Watanabe N; Ijuin HK; Matsumoto M
    Luminescence; 2013; 28(5):696-704. PubMed ID: 22997052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting efficient antenna ligands for Tb(III) emission.
    Samuel AP; Xu J; Raymond KN
    Inorg Chem; 2009 Jan; 48(2):687-98. PubMed ID: 19138147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of thermally stable acylamino-substituted bicyclic dioxetanes and their base-induced chemiluminescent decomposition.
    Watanabe N; Sano Y; Suzuki H; Tanimura M; Ijuin HK; Matsumoto M
    J Org Chem; 2010 Sep; 75(17):5920-6. PubMed ID: 20681740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemiluminescence in autoxidation of phosphonate carbanions. Phospha-1,2-dioxetanes as the most likely high-energy intermediates.
    Motoyoshiya J; Ikeda T; Tsuboi S; Kusaura T; Takeuchi Y; Hayashi S; Yoshioka S; Takaguchi Y; Aoyama H
    J Org Chem; 2003 Jul; 68(15):5950-5. PubMed ID: 12868931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.