These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 17637055)
1. Adiabatic and non-adiabatic concerted proton-electron transfers. Temperature effects in the oxidation of intramolecularly hydrogen-bonded phenols. Costentin C; Robert M; Savéant JM J Am Chem Soc; 2007 Aug; 129(32):9953-63. PubMed ID: 17637055 [TBL] [Abstract][Full Text] [Related]
2. Concerted proton-electron transfers: electrochemical and related approaches. Costentin C; Robert M; Savéant JM Acc Chem Res; 2010 Jul; 43(7):1019-29. PubMed ID: 20232879 [TBL] [Abstract][Full Text] [Related]
3. Kinetic effects of hydrogen bonds on proton-coupled electron transfer from phenols. Sjödin M; Irebo T; Utas JE; Lind J; Merényi G; Akermark B; Hammarström L J Am Chem Soc; 2006 Oct; 128(40):13076-83. PubMed ID: 17017787 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical and homogeneous proton-coupled electron transfers: concerted pathways in the one-electron oxidation of a phenol coupled with an intramolecular amine-driven proton transfer. Costentin C; Robert M; Savéant JM J Am Chem Soc; 2006 Apr; 128(14):4552-3. PubMed ID: 16594674 [TBL] [Abstract][Full Text] [Related]
5. Reorganization energies and pre-exponential factors in the one-electron electrochemical and homogeneous oxidation of phenols coupled with an intramolecular amine-driven proton transfer. Costentin C; Robert M; Savéant JM Phys Chem Chem Phys; 2010 Oct; 12(40):13061-9. PubMed ID: 20689874 [TBL] [Abstract][Full Text] [Related]
6. One-electron oxidation of a hydrogen-bonded phenol occurs by concerted proton-coupled electron transfer. Rhile IJ; Mayer JM J Am Chem Soc; 2004 Oct; 126(40):12718-9. PubMed ID: 15469234 [TBL] [Abstract][Full Text] [Related]
7. Concerted proton-electron transfers. Consistency between electrochemical kinetics and their homogeneous counterparts. Costentin C; Hajj V; Louault C; Robert M; Savéant JM J Am Chem Soc; 2011 Nov; 133(47):19160-7. PubMed ID: 22067039 [TBL] [Abstract][Full Text] [Related]
8. Switching the redox mechanism: models for proton-coupled electron transfer from tyrosine and tryptophan. Sjödin M; Styring S; Wolpher H; Xu Y; Sun L; Hammarström L J Am Chem Soc; 2005 Mar; 127(11):3855-63. PubMed ID: 15771521 [TBL] [Abstract][Full Text] [Related]
9. The kinetic effect of internal hydrogen bonds on proton-coupled electron transfer from phenols: a theoretical analysis with modeling of experimental data. Johannissen LO; Irebo T; Sjödin M; Johansson O; Hammarström L J Phys Chem B; 2009 Dec; 113(50):16214-25. PubMed ID: 20000384 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical approach to concerted proton and electron transfers. Reduction of the water-superoxide ion complex. Costentin C; Evans DH; Robert M; Savéant JM; Singh PS J Am Chem Soc; 2005 Sep; 127(36):12490-1. PubMed ID: 16144387 [TBL] [Abstract][Full Text] [Related]
11. Excited-state proton transfer through water bridges and structure of hydrogen-bonded complexes in 1H-pyrrolo[3,2-h]quinoline: adiabatic time-dependent density functional theory study. Kyrychenko A; Waluk J J Phys Chem A; 2006 Nov; 110(43):11958-67. PubMed ID: 17064184 [TBL] [Abstract][Full Text] [Related]
12. Why are proton transfers at carbon slow? Self-exchange reactions. Costentin C; Savéant JM J Am Chem Soc; 2004 Nov; 126(45):14787-95. PubMed ID: 15535704 [TBL] [Abstract][Full Text] [Related]
13. Concerted proton-electron transfer in the oxidation of hydrogen-bonded phenols. Rhile IJ; Markle TF; Nagao H; DiPasquale AG; Lam OP; Lockwood MA; Rotter K; Mayer JM J Am Chem Soc; 2006 May; 128(18):6075-88. PubMed ID: 16669677 [TBL] [Abstract][Full Text] [Related]
14. Calculation of vibronic couplings for phenoxyl/phenol and benzyl/toluene self-exchange reactions: implications for proton-coupled electron transfer mechanisms. Skone JH; Soudackov AV; Hammes-Schiffer S J Am Chem Soc; 2006 Dec; 128(51):16655-63. PubMed ID: 17177415 [TBL] [Abstract][Full Text] [Related]
15. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6. Carrell TG; Bourles E; Lin M; Dismukes GC Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176 [TBL] [Abstract][Full Text] [Related]
16. Concerted proton-electron transfers in the oxidation of phenols. Costentin C; Robert M; Savéant JM Phys Chem Chem Phys; 2010 Oct; 12(37):11179-90. PubMed ID: 20625575 [TBL] [Abstract][Full Text] [Related]
17. Evidence for concerted pathways in ion-pairing coupled electron transfers. Savéant JM J Am Chem Soc; 2008 Apr; 130(14):4732-41. PubMed ID: 18345668 [TBL] [Abstract][Full Text] [Related]
18. Breaking bonds with electrons and protons. Models and examples. Costentin C; Robert M; Savéant JM; Tard C Acc Chem Res; 2014 Jan; 47(1):271-80. PubMed ID: 24016042 [TBL] [Abstract][Full Text] [Related]
19. Temperature- and pressure-dependence of the outer-sphere reorganization free energy for electron transfer reactions: a continuum approach. Manjari SR; Kim HJ J Phys Chem B; 2006 Jan; 110(1):494-500. PubMed ID: 16471560 [TBL] [Abstract][Full Text] [Related]
20. Metal ion-promoted intramolecular electron transfer in a ferrocene-naphthoquinone linked dyad. Continuous change in driving force and reorganization energy with metal ion concentration. Okamoto K; Imahori H; Fukuzumi S J Am Chem Soc; 2003 Jun; 125(23):7014-21. PubMed ID: 12783556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]