These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 17637064)

  • 1. Machine learning models for lipophilicity and their domain of applicability.
    Schroeter T; Schwaighofer A; Mika S; Laak AT; Suelzle D; Ganzer U; Heinrich N; Müller KR
    Mol Pharm; 2007; 4(4):524-38. PubMed ID: 17637064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.
    Schroeter TS; Schwaighofer A; Mika S; Ter Laak A; Suelzle D; Ganzer U; Heinrich N; Müller KR
    J Comput Aided Mol Des; 2007 Sep; 21(9):485-98. PubMed ID: 17632688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A probabilistic approach to classifying metabolic stability.
    Schwaighofer A; Schroeter T; Mika S; Hansen K; Ter Laak A; Lienau P; Reichel A; Heinrich N; Müller KR
    J Chem Inf Model; 2008 Apr; 48(4):785-96. PubMed ID: 18327900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.
    Schroeter TS; Schwaighofer A; Mika S; Ter Laak A; Suelzle D; Ganzer U; Heinrich N; Müller KR
    J Comput Aided Mol Des; 2007 Dec; 21(12):651-64. PubMed ID: 18060505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate solubility prediction with error bars for electrolytes: a machine learning approach.
    Schwaighofer A; Schroeter T; Mika S; Laub J; ter Laak A; Sülzle D; Ganzer U; Heinrich N; Müller KR
    J Chem Inf Model; 2007; 47(2):407-24. PubMed ID: 17243756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression.
    Chen HF
    Chem Biol Drug Des; 2009 Aug; 74(2):142-7. PubMed ID: 19549084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of P-glycoprotein substrates by a support vector machine approach.
    Xue Y; Yap CW; Sun LZ; Cao ZW; Wang JF; Chen YZ
    J Chem Inf Comput Sci; 2004; 44(4):1497-505. PubMed ID: 15272858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of antibacterial compounds by machine learning approaches.
    Yang XG; Chen D; Wang M; Xue Y; Chen YZ
    J Comput Chem; 2009 Jun; 30(8):1202-11. PubMed ID: 18988254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contemporary QSAR classifiers compared.
    Bruce CL; Melville JL; Pickett SD; Hirst JD
    J Chem Inf Model; 2007; 47(1):219-27. PubMed ID: 17238267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensemble of linear models for predicting drug properties.
    Arodź T; Yuen DA; Dudek AZ
    J Chem Inf Model; 2006; 46(1):416-23. PubMed ID: 16426075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical outcomes of applying ensemble machine learning classifiers to High-Throughput Screening (HTS) data analysis and screening.
    Simmons K; Kinney J; Owens A; Kleier DA; Bloch K; Argentar D; Walsh A; Vaidyanathan G
    J Chem Inf Model; 2008 Nov; 48(11):2196-206. PubMed ID: 18983143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico classification of adenosine receptor antagonists using Laplacian-modified naïve Bayesian, support vector machine, and recursive partitioning.
    Lee JH; Lee S; Choi S
    J Mol Graph Model; 2010 Jun; 28(8):883-90. PubMed ID: 20447849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational aqueous solubility prediction for drug-like compounds in congeneric series.
    Du-Cuny L; Huwyler J; Wiese M; Kansy M
    Eur J Med Chem; 2008 Mar; 43(3):501-12. PubMed ID: 17574307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A maximum common subgraph kernel method for predicting the chromosome aberration test.
    Mohr J; Jain B; Sutter A; Laak AT; Steger-Hartmann T; Heinrich N; Obermayer K
    J Chem Inf Model; 2010 Oct; 50(10):1821-38. PubMed ID: 20883013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian networks for multivariate data analysis and prognostic modelling in cardiac surgery.
    Peek N; Verduijn M; Rosseel PM; de Jonge E; de Mol BA
    Stud Health Technol Inform; 2007; 129(Pt 1):596-600. PubMed ID: 17911786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale evaluation of log P predictors: local corrections may compensate insufficient accuracy and need of experimentally testing every other compound.
    Tetko IV; Poda GI; Ostermann C; Mannhold R
    Chem Biodivers; 2009 Nov; 6(11):1837-44. PubMed ID: 19937825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of in silico models for estimating drug preformulation risk in PEG400/water and Tween80/water systems.
    Crivori P; Morelli A; Pezzetta D; Rocchetti M; Poggesi I
    Eur J Pharm Sci; 2007 Nov; 32(3):169-81. PubMed ID: 17714921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual tracker using sequential bayesian learning: discriminative, generative, and hybrid.
    Lei Y; Ding X; Wang S
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1578-91. PubMed ID: 19022728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaussian processes for classification: QSAR modeling of ADMET and target activity.
    Obrezanova O; Segall MD
    J Chem Inf Model; 2010 Jun; 50(6):1053-61. PubMed ID: 20433177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.