BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 17637339)

  • 1. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase.
    Samel SA; Schoenafinger G; Knappe TA; Marahiel MA; Essen LO
    Structure; 2007 Jul; 15(7):781-92. PubMed ID: 17637339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the termination module of a nonribosomal peptide synthetase.
    Tanovic A; Samel SA; Essen LO; Marahiel MA
    Science; 2008 Aug; 321(5889):659-63. PubMed ID: 18583577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases: the C5 domain of tyrocidine synthetase is a (D)C(L) catalyst.
    Clugston SL; Sieber SA; Marahiel MA; Walsh CT
    Biochemistry; 2003 Oct; 42(41):12095-104. PubMed ID: 14556641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains.
    Keating TA; Marshall CG; Walsh CT; Keating AE
    Nat Struct Biol; 2002 Jul; 9(7):522-6. PubMed ID: 12055621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excision of the epothilone synthetase B cyclization domain and demonstration of in trans condensation/cyclodehydration activity.
    Kelly WL; Hillson NJ; Walsh CT
    Biochemistry; 2005 Oct; 44(40):13385-93. PubMed ID: 16201763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utility of epimerization domains for the redesign of nonribosomal peptide synthetases.
    Stein DB; Linne U; Marahiel MA
    FEBS J; 2005 Sep; 272(17):4506-20. PubMed ID: 16128819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases.
    Quadri LE; Weinreb PH; Lei M; Nakano MM; Zuber P; Walsh CT
    Biochemistry; 1998 Feb; 37(6):1585-95. PubMed ID: 9484229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases.
    Roongsawang N; Lim SP; Washio K; Takano K; Kanaya S; Morikawa M
    FEMS Microbiol Lett; 2005 Nov; 252(1):143-51. PubMed ID: 16182472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of epimerization domains on the intermodular transfer of enzyme-bound intermediates in nonribosomal peptide synthesis.
    Stein DB; Linne U; Hahn M; Marahiel MA
    Chembiochem; 2006 Nov; 7(11):1807-14. PubMed ID: 16952189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BlmIII and BlmIV nonribosomal peptide synthetase-catalyzed biosynthesis of the bleomycin bithiazole moiety involving both in cis and in trans aminoacylation.
    Du L; Chen M; Zhang Y; Shen B
    Biochemistry; 2003 Aug; 42(32):9731-40. PubMed ID: 12911315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational switches modulate protein interactions in peptide antibiotic synthetases.
    Koglin A; Mofid MR; Löhr F; Schäfer B; Rogov VV; Blum MM; Mittag T; Marahiel MA; Bernhard F; Dötsch V
    Science; 2006 Apr; 312(5771):273-6. PubMed ID: 16614225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a non-ribosomal lipopeptide.
    Samel SA; Wagner B; Marahiel MA; Essen LO
    J Mol Biol; 2006 Jun; 359(4):876-89. PubMed ID: 16697411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bidomain nonribosomal peptide synthetase encoded by FUM14 catalyzes the formation of tricarballylic esters in the biosynthesis of fumonisins.
    Zaleta-Rivera K; Xu C; Yu F; Butchko RA; Proctor RH; Hidalgo-Lara ME; Raza A; Dussault PH; Du L
    Biochemistry; 2006 Feb; 45(8):2561-9. PubMed ID: 16489749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stoichiometry and specificity of in vitro phosphopantetheinylation and aminoacylation of the valine-activating module of surfactin synthetase.
    Weinreb PH; Quadri LE; Walsh CT; Zuber P
    Biochemistry; 1998 Feb; 37(6):1575-84. PubMed ID: 9484228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the epimerization domain of tyrocidine synthetase A.
    Samel SA; Czodrowski P; Essen LO
    Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1442-52. PubMed ID: 24816112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of a bimodular model system for the investigation of heterocyclization in nonribosomal peptide biosynthesis.
    Duerfahrt T; Eppelmann K; Müller R; Marahiel MA
    Chem Biol; 2004 Feb; 11(2):261-71. PubMed ID: 15123287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP.
    Jogl G; Tong L
    Biochemistry; 2004 Feb; 43(6):1425-31. PubMed ID: 14769018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo characterization of tandem C-terminal thioesterase domains in arthrofactin synthetase.
    Roongsawang N; Washio K; Morikawa M
    Chembiochem; 2007 Mar; 8(5):501-12. PubMed ID: 17328008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico analysis of the adenylation domains of the freestanding enzymes belonging to the eucaryotic nonribosomal peptide synthetase-like family.
    Di Vincenzo L; Grgurina I; Pascarella S
    FEBS J; 2005 Feb; 272(4):929-41. PubMed ID: 15691327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimeric structure of the six-domain VibF subunit of vibriobactin synthetase: mutant domain activity regain and ultracentrifugation studies.
    Hillson NJ; Walsh CT
    Biochemistry; 2003 Jan; 42(3):766-75. PubMed ID: 12534289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.