BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 17637344)

  • 1. Crystallographic snapshots of oxalyl-CoA decarboxylase give insights into catalysis by nonoxidative ThDP-dependent decarboxylases.
    Berthold CL; Toyota CG; Moussatche P; Wood MD; Leeper F; Richards NG; Lindqvist Y
    Structure; 2007 Jul; 15(7):853-61. PubMed ID: 17637344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates.
    Schütz A; Golbik R; König S; Hübner G; Tittmann K
    Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and kinetic analysis of catalysis by a thiamin diphosphate-dependent enzyme, benzoylformate decarboxylase.
    Polovnikova ES; McLeish MJ; Sergienko EA; Burgner JT; Anderson NL; Bera AK; Jordan F; Kenyon GL; Hasson MS
    Biochemistry; 2003 Feb; 42(7):1820-30. PubMed ID: 12590569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrahedral intermediates in thiamin diphosphate-dependent decarboxylations exist as a 1',4'-imino tautomeric form of the coenzyme, unlike the michaelis complex or the free coenzyme.
    Nemeria N; Baykal A; Joseph E; Zhang S; Yan Y; Furey W; Jordan F
    Biochemistry; 2004 Jun; 43(21):6565-75. PubMed ID: 15157089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least motion mechanism with an unprecedented short-lived predecarboxylation intermediate.
    Bruning M; Berheide M; Meyer D; Golbik R; Bartunik H; Liese A; Tittmann K
    Biochemistry; 2009 Apr; 48(15):3258-68. PubMed ID: 19182954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The catalytic cycle of a thiamin diphosphate enzyme examined by cryocrystallography.
    Wille G; Meyer D; Steinmetz A; Hinze E; Golbik R; Tittmann K
    Nat Chem Biol; 2006 Jun; 2(6):324-8. PubMed ID: 16680160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cofactor activation and substrate binding in pyruvate decarboxylase. Insights into the reaction mechanism from molecular dynamics simulations.
    Lie MA; Celik L; Jørgensen KA; Schiøtt B
    Biochemistry; 2005 Nov; 44(45):14792-806. PubMed ID: 16274227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of benzoylformate decarboxylase at 1.6 A resolution: diversity of catalytic residues in thiamin diphosphate-dependent enzymes.
    Hasson MS; Muscate A; McLeish MJ; Polovnikova LS; Gerlt JA; Kenyon GL; Petsko GA; Ringe D
    Biochemistry; 1998 Jul; 37(28):9918-30. PubMed ID: 9665697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiamin diphosphate in biological chemistry: analogues of thiamin diphosphate in studies of enzymes and riboswitches.
    Agyei-Owusu K; Leeper FJ
    FEBS J; 2009 Jun; 276(11):2905-16. PubMed ID: 19490097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for activation of the thiamin diphosphate-dependent enzyme oxalyl-CoA decarboxylase by adenosine diphosphate.
    Berthold CL; Moussatche P; Richards NG; Lindqvist Y
    J Biol Chem; 2005 Dec; 280(50):41645-54. PubMed ID: 16216870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into structure-function relationships of oxalyl CoA decarboxylase from Escherichia coli.
    Werther T; Zimmer A; Wille G; Golbik R; Weiss MS; König S
    FEBS J; 2010 Jun; 277(12):2628-40. PubMed ID: 20553497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity in thiamin diphosphate-dependent decarboxylases.
    Andrews FH; McLeish MJ
    Bioorg Chem; 2012 Aug; 43():26-36. PubMed ID: 22245019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p-Coumaric acid decarboxylase from Lactobacillus plantarum: structural insights into the active site and decarboxylation catalytic mechanism.
    Rodríguez H; Angulo I; de Las Rivas B; Campillo N; Páez JA; Muñoz R; Mancheño JM
    Proteins; 2010 May; 78(7):1662-76. PubMed ID: 20112419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and time course of formation of major thiamin diphosphate-bound covalent intermediates derived from a chromophoric substrate analogue on benzoylformate decarboxylase.
    Chakraborty S; Nemeria NS; Balakrishnan A; Brandt GS; Kneen MM; Yep A; McLeish MJ; Kenyon GL; Petsko GA; Ringe D; Jordan F
    Biochemistry; 2009 Feb; 48(5):981-94. PubMed ID: 19140682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR analysis of covalent intermediates in thiamin diphosphate enzymes.
    Tittmann K; Golbik R; Uhlemann K; Khailova L; Schneider G; Patel M; Jordan F; Chipman DM; Duggleby RG; Hübner G
    Biochemistry; 2003 Jul; 42(26):7885-91. PubMed ID: 12834340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiamin-diphosphate-dependent enzymes: new aspects of asymmetric C-C bond formation.
    Pohl M; Lingen B; Müller M
    Chemistry; 2002 Dec; 8(23):5288-95. PubMed ID: 12432496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DFT study of solvation effects on the tautomeric equilibrium and catalytic ylide generation of thiamin models.
    Alstrup Lie M; Schiøtt B
    J Comput Chem; 2008 May; 29(7):1037-47. PubMed ID: 18058864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexibility of thiamine diphosphate revealed by kinetic crystallographic studies of the reaction of pyruvate-ferredoxin oxidoreductase with pyruvate.
    Cavazza C; Contreras-Martel C; Pieulle L; Chabrière E; Hatchikian EC; Fontecilla-Camps JC
    Structure; 2006 Feb; 14(2):217-24. PubMed ID: 16472741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of phenylpyruvate decarboxylase from Azospirillum brasilense at 1.5 A resolution. Implications for its catalytic and regulatory mechanism.
    Versées W; Spaepen S; Vanderleyden J; Steyaert J
    FEBS J; 2007 May; 274(9):2363-75. PubMed ID: 17403037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.