These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 17637827)
21. Effect of Durotomy versus Myelotomy on Tissue Sparing and Functional Outcome after Spinal Cord Injury. Khaing ZZ; Cates LN; Dewees DM; Hyde JE; Gaing A; Birjandian Z; Hofstetter CP J Neurotrauma; 2021 Mar; 38(6):746-755. PubMed ID: 33121382 [TBL] [Abstract][Full Text] [Related]
22. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin. Hodgetts SI; Simmons PJ; Plant GW Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131 [TBL] [Abstract][Full Text] [Related]
23. The distribution of tissue damage in the spinal cord is influenced by the contusion velocity. Sparrey CJ; Choo AM; Liu J; Tetzlaff W; Oxland TR Spine (Phila Pa 1976); 2008 Oct; 33(22):E812-9. PubMed ID: 18923304 [TBL] [Abstract][Full Text] [Related]
24. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord. Nandoe Tewarie RD; Hurtado A; Ritfeld GJ; Rahiem ST; Wendell DF; Barroso MM; Grotenhuis JA; Oudega M J Neurotrauma; 2009 Dec; 26(12):2313-22. PubMed ID: 19645530 [TBL] [Abstract][Full Text] [Related]
25. Functional assessment of the acute local and distal transplantation of human neural stem cells after spinal cord injury. Cheng I; Mayle RE; Cox CA; Park DY; Smith RL; Corcoran-Schwartz I; Ponnusamy KE; Oshtory R; Smuck MW; Mitra R; Kharazi AI; Carragee EJ Spine J; 2012 Nov; 12(11):1040-4. PubMed ID: 23063425 [TBL] [Abstract][Full Text] [Related]
26. Olfactory ensheathing cells can reduce the tissue loss but not the cavity formation in contused spinal cord of rats. Li BC; Li Y; Chen LF; Chang JY; Duan ZX J Neurol Sci; 2011 Apr; 303(1-2):67-74. PubMed ID: 21306739 [TBL] [Abstract][Full Text] [Related]
27. [The morphological basis for using low-intensity laser radiation in patients with foci of spinal cord contusion]. Stupak VV; Zaĭdman AM; Serpeninova NN Zh Vopr Neirokhir Im N N Burdenko; 1998; (4):36-40. PubMed ID: 9988891 [No Abstract] [Full Text] [Related]
28. Role of early surgical decompression of the intradural space after cervical spinal cord injury in an animal model. Smith JS; Anderson R; Pham T; Bhatia N; Steward O; Gupta R J Bone Joint Surg Am; 2010 May; 92(5):1206-14. PubMed ID: 20439667 [TBL] [Abstract][Full Text] [Related]
29. Postmortem magnetic resonance imaging of experimental spinal cord injury: magnetic resonance findings versus in vivo functional deficit. Hackney DB; Finkelstein SD; Hand CM; Markowitz RS; Black P Neurosurgery; 1994 Dec; 35(6):1104-11. PubMed ID: 7885555 [TBL] [Abstract][Full Text] [Related]
31. Tail nerve electrical stimulation combined with scar ablation and neural transplantation promotes locomotor recovery in rats with chronically contused spinal cord. Zhang SX; Huang F; Gates M; Holmberg EG Brain Res; 2012 May; 1456():22-35. PubMed ID: 22516110 [TBL] [Abstract][Full Text] [Related]
32. Combining motor training with transplantation of rat bone marrow stromal cells does not improve repair or recovery in rats with thoracic contusion injuries. Yoshihara H; Shumsky JS; Neuhuber B; Otsuka T; Fischer I; Murray M Brain Res; 2006 Nov; 1119(1):65-75. PubMed ID: 17027672 [TBL] [Abstract][Full Text] [Related]
33. X-ray microbeam irradiation of the contusion-injured rat spinal cord temporarily improves hind-limb function. Dilmanian FA; Jenkins AL; Olschowka JA; Zhong Z; Park JY; Desnoyers NR; Sobotka S; Fois GR; Messina CR; Morales M; Hurley SD; Trojanczyk L; Ahmad S; Shahrabi N; Coyle PK; Meek AG; O'Banion MK Radiat Res; 2013 Jan; 179(1):76-88. PubMed ID: 23216524 [TBL] [Abstract][Full Text] [Related]
34. Inhibition of x-irradiation-enhanced locomotor recovery after spinal cord injury by hyperbaric oxygen or the antioxidant nitroxide tempol. Hillard VH; Peng H; Das K; Murali R; Moorthy CR; Etlinger JD; Zeman RJ J Neurosurg Spine; 2007 Apr; 6(4):337-43. PubMed ID: 17436923 [TBL] [Abstract][Full Text] [Related]
35. Perfusion imaging of spinal cord contusion: injury-induced blockade and partial reversal by β2-agonist treatment in rats. Brown A; Nabel A; Oh W; Etlinger JD; Zeman RJ J Neurosurg Spine; 2014 Feb; 20(2):164-71. PubMed ID: 24313676 [TBL] [Abstract][Full Text] [Related]
36. Cell elimination as a strategy for repair in acute spinal cord injury. Kalderon N Curr Pharm Des; 2005; 11(10):1237-45. PubMed ID: 15853680 [TBL] [Abstract][Full Text] [Related]
37. Chondroitinase gene therapy improves upper limb function following cervical contusion injury. James ND; Shea J; Muir EM; Verhaagen J; Schneider BL; Bradbury EJ Exp Neurol; 2015 Sep; 271():131-5. PubMed ID: 26044197 [TBL] [Abstract][Full Text] [Related]
38. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Hasegawa K; Chang YW; Li H; Berlin Y; Ikeda O; Kane-Goldsmith N; Grumet M Exp Neurol; 2005 Jun; 193(2):394-410. PubMed ID: 15869942 [TBL] [Abstract][Full Text] [Related]
39. The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats. Haider T; Höftberger R; Rüger B; Mildner M; Blumer R; Mitterbauer A; Buchacher T; Sherif C; Altmann P; Redl H; Gabriel C; Gyöngyösi M; Fischer MB; Lubec G; Ankersmit HJ Exp Neurol; 2015 May; 267():230-42. PubMed ID: 25797576 [TBL] [Abstract][Full Text] [Related]