These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 17637972)
1. Vesicle aggregation by multivalent ligands: relating crosslinking ability to surface affinity. Wang X; Mart RJ; Webb SJ Org Biomol Chem; 2007 Aug; 5(15):2498-505. PubMed ID: 17637972 [TBL] [Abstract][Full Text] [Related]
2. Effects of linker length and flexibility on multivalent targeting. Shewmake TA; Solis FJ; Gillies RJ; Caplan MR Biomacromolecules; 2008 Nov; 9(11):3057-64. PubMed ID: 18828631 [TBL] [Abstract][Full Text] [Related]
3. Model and simulation of multivalent binding to fixed ligands. Müller KM; Arndt KM; Plückthun A Anal Biochem; 1998 Aug; 261(2):149-58. PubMed ID: 9716417 [TBL] [Abstract][Full Text] [Related]
4. Photo-induced double-strand DNA and site-specific protein cleavage activity of L-histidine (mu-oxo)diiron(III) complexes of heterocyclic bases. Roy M; Bhowmick T; Santhanagopal R; Ramakumar S; Chakravarty AR Dalton Trans; 2009 Jun; (24):4671-82. PubMed ID: 19513475 [TBL] [Abstract][Full Text] [Related]
5. Two-photon excitation fluorescence cross-correlation assay for ligand-receptor binding: cell membrane nanopatches containing the human micro-opioid receptor. Swift JL; Burger MC; Massotte D; Dahms TE; Cramb DT Anal Chem; 2007 Sep; 79(17):6783-91. PubMed ID: 17683166 [TBL] [Abstract][Full Text] [Related]
6. Anti-crosslinking properties of carnosine: significance of histidine. Hobart LJ; Seibel I; Yeargans GS; Seidler NW Life Sci; 2004 Jul; 75(11):1379-89. PubMed ID: 15234195 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of antisense oligonucleotides conjugated to a multivalent carbohydrate cluster for cellular targeting. Maier MA; Yannopoulos CG; Mohamed N; Roland A; Fritz H; Mohan V; Just G; Manoharan M Bioconjug Chem; 2003; 14(1):18-29. PubMed ID: 12526688 [TBL] [Abstract][Full Text] [Related]
8. Effects of clustered epitopes in multivalent ligand-receptor interactions. Dam TK; Brewer CF Biochemistry; 2008 Aug; 47(33):8470-6. PubMed ID: 18652478 [TBL] [Abstract][Full Text] [Related]
9. Selectivity of competitive multivalent interactions at interfaces. André T; Reichel A; Wiesmüller KH; Tampé R; Piehler J; Brock R Chembiochem; 2009 Jul; 10(11):1878-87. PubMed ID: 19565593 [TBL] [Abstract][Full Text] [Related]
10. Photo-cross-linked small-molecule microarrays as chemical genomic tools for dissecting protein-ligand interactions. Kanoh N; Asami A; Kawatani M; Honda K; Kumashiro S; Takayama H; Simizu S; Amemiya T; Kondoh Y; Hatakeyama S; Tsuganezawa K; Utata R; Tanaka A; Yokoyama S; Tashiro H; Osada H Chem Asian J; 2006 Dec; 1(6):789-97. PubMed ID: 17441122 [TBL] [Abstract][Full Text] [Related]
11. Small multivalent architectures mimicking homotrimers of the TNF superfamily member CD40L: delineating the relationship between structure and effector function. Trouche N; Wieckowski S; Sun W; Chaloin O; Hoebeke J; Fournel S; Guichard G J Am Chem Soc; 2007 Nov; 129(44):13480-92. PubMed ID: 17935324 [TBL] [Abstract][Full Text] [Related]
12. Modification of gelatin by reaction with 1,6-diisocyanatohexane. Bertoldo M; Bronco S; Gragnoli T; Ciardelli F Macromol Biosci; 2007 Mar; 7(3):328-38. PubMed ID: 17370271 [TBL] [Abstract][Full Text] [Related]
13. The thermodynamics of protein-ligand interaction and solvation: insights for ligand design. Olsson TS; Williams MA; Pitt WR; Ladbury JE J Mol Biol; 2008 Dec; 384(4):1002-17. PubMed ID: 18930735 [TBL] [Abstract][Full Text] [Related]
14. Effect of methyl substitution in a ligand on the selectivity and binding affinity for a nucleobase: a case study with isoxanthopterin and its derivatives. Rajendar B; Rajendran A; Sato Y; Nishizawa S; Teramae N Bioorg Med Chem; 2009 Jan; 17(1):351-9. PubMed ID: 19010683 [TBL] [Abstract][Full Text] [Related]
15. Development of a fitting model suitable for the isothermal titration calorimetric curve of DNA with cationic ligands. Kim W; Yamasaki Y; Kataoka K J Phys Chem B; 2006 Jun; 110(22):10919-25. PubMed ID: 16771345 [TBL] [Abstract][Full Text] [Related]
16. Binding mechanisms of PEGylated ligands reveal multiple effects of the PEG scaffold. Das R; Baird E; Allen S; Baird B; Holowka D; Goldstein B Biochemistry; 2008 Jan; 47(3):1017-30. PubMed ID: 18154361 [TBL] [Abstract][Full Text] [Related]
17. Modeling the multivalent recognition between dendritic molecules and DNA: understanding how ligand "sacrifice" and screening can enhance binding. Pavan GM; Danani A; Pricl S; Smith DK J Am Chem Soc; 2009 Jul; 131(28):9686-94. PubMed ID: 19555062 [TBL] [Abstract][Full Text] [Related]
18. Hydrophobically self-assembled nanoparticles as molecular receptors in water. Tomas S; Milanesi L J Am Chem Soc; 2009 May; 131(18):6618-23. PubMed ID: 19366207 [TBL] [Abstract][Full Text] [Related]
19. Oligomerization is required for the activity of recombinant soluble LOX-1. Cao W; Calabro V; Root A; Yan G; Lam K; Olland S; Sanford J; Robak A; Zollner R; Lu Z; Ait-Zahra M; Agostinelli R; Tchistiakova L; Gill D; Harnish D; Paulsen J; Shih HH FEBS J; 2009 Sep; 276(17):4909-20. PubMed ID: 19664054 [TBL] [Abstract][Full Text] [Related]
20. High-resolution structural analysis of mammalian profilin 2a complex formation with two physiological ligands: the formin homology 1 domain of mDia1 and the proline-rich domain of VASP. Kursula P; Kursula I; Massimi M; Song YH; Downer J; Stanley WA; Witke W; Wilmanns M J Mol Biol; 2008 Jan; 375(1):270-90. PubMed ID: 18001770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]