These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 176382)
41. Hematoporphyrin derivative-induced photosensitivity of mitochondrial succinate dehydrogenase and selected cytosolic enzymes of R3230AC mammary adenocarcinomas of rats. Hilf R; Smail DB; Murant RS; Leakey PB; Gibson SL Cancer Res; 1984 Apr; 44(4):1483-8. PubMed ID: 6231099 [TBL] [Abstract][Full Text] [Related]
42. Expression of epidermal growth factor-related proteins in the aged adult mouse mammary gland and their relationship to tumorigenesis. Herrington EE; Ram TG; Salomon DS; Johnson GR; Gullick WJ; Kenney N; Hosick HL J Cell Physiol; 1997 Jan; 170(1):47-56. PubMed ID: 9012784 [TBL] [Abstract][Full Text] [Related]
43. Heterogeneity of keratin expression in mouse mammary hyperplastic alveolar nodules and adenocarcinomas. Asch HL; Asch BB Cancer Res; 1985 Jun; 45(6):2760-8. PubMed ID: 2580627 [TBL] [Abstract][Full Text] [Related]
44. [Phagocytic activity and characteristics of the metabolism of mouse alveolar and peritoneal macrophages]. Kaplanskiĭ AS; Durnova GN Tsitologiia; 1973 Apr; 15(4):462-6. PubMed ID: 4148722 [No Abstract] [Full Text] [Related]
45. Oxidative enzymes in the development of Fasciola hepatica L. V. Activity of oxidases and dehydrogenases in the Cercaria and Metacercaria. Humiczewska M Folia Histochem Cytochem (Krakow); 1975; 13(3-4):213-29. PubMed ID: 173636 [TBL] [Abstract][Full Text] [Related]
46. Membrane proliferation and phosphatidylcholine synthesis in normal, preneoplastic, and neoplastic mammary gland tissues in C3H mice. Hillyard LA; Abraham S Cancer Res; 1972 Dec; 32(12):2834-41. PubMed ID: 4404994 [No Abstract] [Full Text] [Related]
47. Expression and functional properties of transforming growth factor alpha and epidermal growth factor during mouse mammary gland ductal morphogenesis. Snedeker SM; Brown CF; DiAugustine RP Proc Natl Acad Sci U S A; 1991 Jan; 88(1):276-80. PubMed ID: 1986376 [TBL] [Abstract][Full Text] [Related]
48. [Monoamine oxidase and respiratory chain enzymatic activity in acute hypoxia]. Khvatova EM; Rubanova NA; Zhilina IA Vopr Med Khim; 1973; 19(1):3-5. PubMed ID: 4150857 [No Abstract] [Full Text] [Related]
49. Histochemical study of oxidative andhydrolytic enzymes in the human thyroid. Harcourt-Webster JN; Stott NC J Pathol Bacteriol; 1966 Oct; 92(2):291-302. PubMed ID: 6012961 [No Abstract] [Full Text] [Related]
50. Structural and functional changes in Novikoff hepatoma mitochondria. White MT; Tewari KK Cancer Res; 1973 Jul; 33(7):1645-53. PubMed ID: 4352794 [No Abstract] [Full Text] [Related]
51. The Goat (Capra hircus) Mammary Gland Mitochondrial Proteome: A Study on the Effect of Weight Loss Using Blue-Native PAGE and Two-Dimensional Gel Electrophoresis. Cugno G; Parreira JR; Ferlizza E; Hernández-Castellano LE; Carneiro M; Renaut J; Castro N; Arguello A; Capote J; Campos AM; Almeida AM PLoS One; 2016; 11(3):e0151599. PubMed ID: 27031334 [TBL] [Abstract][Full Text] [Related]
52. Oxidation of bilirubin in the brain-further characterization of a potentially protective mechanism. Hansen TW; Allen JW; Tommarello S Mol Genet Metab; 1999 Nov; 68(3):404-9. PubMed ID: 10562468 [TBL] [Abstract][Full Text] [Related]
53. [Presence of endogenous inhibitors of the respiratory chain in organs and tissues of rat]. Acta Biol Med Ger; 1975; 34(11-12|760407-761028-2):1793-806. PubMed ID: 1241928 [TBL] [Abstract][Full Text] [Related]
54. The alpha-glycerophosphate cycle in Drosophila melanogaster. IV. Metabolic, ultrastructural, and adaptive consequences of alphaGpdh-l "null" mutations. O'Brien SJ; Shimada Y J Cell Biol; 1974 Dec; 63(3):864-82. PubMed ID: 4154945 [TBL] [Abstract][Full Text] [Related]
55. Essentiality of coenzyme Q for the oxidation of -glycerophosphate by pig brain mitochondria. Salach JI; Bednarz AJ Arch Biochem Biophys; 1973 Jul; 157(1):133-44. PubMed ID: 4146143 [No Abstract] [Full Text] [Related]
56. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. Lenaz G IUBMB Life; 2001; 52(3-5):159-64. PubMed ID: 11798028 [TBL] [Abstract][Full Text] [Related]
57. The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria. Chapman C; Bartley W Biochem J; 1968 Apr; 107(4):455-65. PubMed ID: 5660627 [TBL] [Abstract][Full Text] [Related]
58. Malic enzyme, malate dehydrogenase, fumarate reductase and succinate dehydrogenase in the larvae of Taenia crassiceps (Zeder, 1800). Zenka J; Prokopic J Folia Parasitol (Praha); 1987; 34(2):131-6. PubMed ID: 3596392 [TBL] [Abstract][Full Text] [Related]
59. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study. Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422 [TBL] [Abstract][Full Text] [Related]
60. Studies on the biogenesis of an enzymatically active complex III of the respiratory chain from yeast mitochondria. Beattie DS; Battie CA; Weiss RA J Supramol Struct; 1980; 14(2):139-48. PubMed ID: 6262574 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]