These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17639126)

  • 1. Deduction of intracellular sub-systems from a topological description of the network.
    Nordling TE; Hiroi N; Funahashi A; Kitano H
    Mol Biosyst; 2007 Aug; 3(8):523-9. PubMed ID: 17639126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical functional organization of formal biological systems: a dynamical approach. II. The concept of non-symmetry leads to a criterion of evolution deduced from an optimum principle of the (O-FBS) sub-system.
    Chauvet GA
    Philos Trans R Soc Lond B Biol Sci; 1993 Mar; 339(1290):445-61. PubMed ID: 8098873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of small scale biochemical networks based on general type system perturbations.
    Schmidt H; Cho KH; Jacobsen EW
    FEBS J; 2005 May; 272(9):2141-51. PubMed ID: 15853799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomarkers in aquatic plants: selection and utility.
    Brain RA; Cedergreen N
    Rev Environ Contam Toxicol; 2009; 198():49-109. PubMed ID: 19253039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks.
    Huang S; Ingber DE
    Exp Cell Res; 2000 Nov; 261(1):91-103. PubMed ID: 11082279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph sharpening plus graph integration: a synergy that improves protein functional classification.
    Shin H; Lisewski AM; Lichtarge O
    Bioinformatics; 2007 Dec; 23(23):3217-24. PubMed ID: 17977886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fitting a geometric graph to a protein-protein interaction network.
    Higham DJ; Rasajski M; Przulj N
    Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical functional organization of formal biological systems: a dynamical approach. III. The concept of non-locality leads to a field theory describing the dynamics at each level of organization of the (D-FBS) sub-system.
    Chauvet GA
    Philos Trans R Soc Lond B Biol Sci; 1993 Mar; 339(1290):463-81. PubMed ID: 8098874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical functional organization of formal biological systems: a dynamical approach. I. The increase of complexity by self-association increases the domain of stability of a biological system.
    Chauvet GA
    Philos Trans R Soc Lond B Biol Sci; 1993 Mar; 339(1290):425-44. PubMed ID: 8098872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide system analysis reveals stable yet flexible network dynamics in yeast.
    Gustafsson M; Hörnquist M; Björkegren J; Tegnér J
    IET Syst Biol; 2009 Jul; 3(4):219-28. PubMed ID: 19640161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robustness in regulatory networks: a multi-disciplinary approach.
    Demongeot J; Elena A; Sené S
    Acta Biotheor; 2008 Jun; 56(1-2):27-49. PubMed ID: 18379883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein networking: insights into global functional organization of proteomes.
    Pieroni E; de la Fuente van Bentem S; Mancosu G; Capobianco E; Hirt H; de la Fuente A
    Proteomics; 2008 Feb; 8(4):799-816. PubMed ID: 18297653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A graph-based approach to systematically reconstruct human transcriptional regulatory modules.
    Yan X; Mehan MR; Huang Y; Waterman MS; Yu PS; Zhou XJ
    Bioinformatics; 2007 Jul; 23(13):i577-86. PubMed ID: 17646346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A data integration approach for cell cycle analysis oriented to model simulation in systems biology.
    Alfieri R; Merelli I; Mosca E; Milanesi L
    BMC Syst Biol; 2007 Aug; 1():35. PubMed ID: 17678529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds.
    Prado-Prado FJ; González-Díaz H; de la Vega OM; Ubeira FM; Chou KC
    Bioorg Med Chem; 2008 Jun; 16(11):5871-80. PubMed ID: 18485714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A network thermodynamic approach to the Hill-King and Altman approach to kinetics: computer simulation.
    Mikulecky DC
    Prog Clin Biol Res; 1983; 126():257-82. PubMed ID: 6889391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural systems biology: modelling protein interactions.
    Aloy P; Russell RB
    Nat Rev Mol Cell Biol; 2006 Mar; 7(3):188-97. PubMed ID: 16496021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllability of non-linear biochemical systems.
    Ervadi-Radhakrishnan A; Voit EO
    Math Biosci; 2005 Jul; 196(1):99-123. PubMed ID: 15982674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building functional modules from molecular interactions.
    Hofmann KP; Spahn CM; Heinrich R; Heinemann U
    Trends Biochem Sci; 2006 Sep; 31(9):497-508. PubMed ID: 16890441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.