BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 17639353)

  • 21. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.
    Bergholt MS; Duraipandian S; Zheng W; Huang Z
    Anal Chem; 2013 Dec; 85(23):11297-303. PubMed ID: 24160634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of primary tumors of brain metastases by SIMCA classification of IR spectroscopic images.
    Krafft C; Shapoval L; Sobottka SB; Geiger KD; Schackert G; Salzer R
    Biochim Biophys Acta; 2006 Jul; 1758(7):883-91. PubMed ID: 16787638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Infrared and Raman imaging spectroscopy of ex vivo skin.
    Flach CR; Moore DJ
    Int J Cosmet Sci; 2013 Apr; 35(2):125-35. PubMed ID: 23106608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinguishing malignant from normal oral tissues using FTIR fiber-optic techniques.
    Wu JG; Xu YZ; Sun CW; Soloway RD; Xu DF; Wu QG; Sun KH; Weng SF; Xu GX
    Biopolymers; 2001; 62(4):185-92. PubMed ID: 11391568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatially resolved determination of the structure and composition of diatom cell walls by Raman and FTIR imaging.
    Kammer M; Hedrich R; Ehrlich H; Popp J; Brunner E; Krafft C
    Anal Bioanal Chem; 2010 Sep; 398(1):509-17. PubMed ID: 20582694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of a mechanical iris-based fiber optic probe for spatially offset Raman spectroscopy.
    Wang Z; Ding H; Lu G; Bi X
    Opt Lett; 2014 Jul; 39(13):3790-3. PubMed ID: 24978738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectral histopathology of colon cancer tissue sections by Raman imaging with 532 nm excitation provides label free annotation of lymphocytes, erythrocytes and proliferating nuclei of cancer cells.
    Mavarani L; Petersen D; El-Mashtoly SF; Mosig A; Tannapfel A; Kötting C; Gerwert K
    Analyst; 2013 Jul; 138(14):4035-9. PubMed ID: 23733134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined Fourier transform infrared and Raman spectroscopic approach for identification of multidrug resistance phenotype in cancer cell lines.
    Krishna CM; Kegelaer G; Adt I; Rubin S; Kartha VB; Manfait M; Sockalingum GD
    Biopolymers; 2006 Aug; 82(5):462-70. PubMed ID: 16493658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Raman spectroscopy can differentiate malignant tumors from normal breast tissue and detect early neoplastic changes in a mouse model.
    Kast RE; Serhatkulu GK; Cao A; Pandya AK; Dai H; Thakur JS; Naik VM; Naik R; Klein MD; Auner GW; Rabah R
    Biopolymers; 2008 Mar; 89(3):235-41. PubMed ID: 18041066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of urinary calculi by Raman laser fiber optics spectroscopy.
    Hong TD; Phat D; Plaza P; Daudon M; Dao NQ
    Clin Chem; 1992 Feb; 38(2):292-8. PubMed ID: 1541013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative study of the endoscope-based bevelled and volume fiber-optic Raman probes for optical diagnosis of gastric dysplasia in vivo at endoscopy.
    Wang J; Lin K; Zheng W; Ho KY; Teh M; Yeoh KG; Huang Z
    Anal Bioanal Chem; 2015 Nov; 407(27):8303-10. PubMed ID: 25943262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo detection of small subsurface melanomas in athymic mice using noninvasive fiber optic confocal imaging.
    Anikijenko P; Vo LT; Murr ER; Carrasco J; McLaren WJ; Chen Q; Thomas SG; Delaney PM; King RG
    J Invest Dermatol; 2001 Dec; 117(6):1442-8. PubMed ID: 11886506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodistribution assessment of a lutetium(III) texaphyrin analogue in tumor-bearing mice using NIR Fourier-transform Raman spectroscopy.
    Synytsya A; Král V; Matejka P; Poucková P; Volka K; Sessler JL
    Photochem Photobiol; 2004 May; 79(5):453-60. PubMed ID: 15191055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Raman and FTIR spectroscopy in determining the chemical changes in healthy brain tissues and glioblastoma tumor tissues.
    Depciuch J; Tołpa B; Witek P; Szmuc K; Kaznowska E; Osuchowski M; Król P; Cebulski J
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117526. PubMed ID: 31655362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The many facets of Raman spectroscopy for biomedical analysis.
    Krafft C; Popp J
    Anal Bioanal Chem; 2015 Jan; 407(3):699-717. PubMed ID: 25428454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fiber-optic probes enable cancer detection with FTIR spectroscopy.
    Mackanos MA; Contag CH
    Trends Biotechnol; 2010 Jun; 28(6):317-23. PubMed ID: 20452071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Screening of biochemical/histological changes associated to C6 glioma tumor development by FTIR/PCA imaging.
    Beljebbar A; Dukic S; Amharref N; Manfait M
    Analyst; 2010 May; 135(5):1090-7. PubMed ID: 20419261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorocarbon fiber-optic Raman probe for non-invasive Raman spectroscopy.
    Ookagbare PI; Morris MD
    Appl Spectrosc; 2012 Jun; 66(6):728-30. PubMed ID: 22732546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a multi-needle fiberoptic Raman spectroscopy technique for simultaneous multi-site deep tissue Raman measurements in the brain.
    Qiu B; Shu C; Huang Z
    Opt Lett; 2023 Aug; 48(16):4396-4399. PubMed ID: 37582041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales.
    St-Arnaud K; Aubertin K; Strupler M; Madore WJ; Grosset AA; Petrecca K; Trudel D; Leblond F
    Med Phys; 2018 Jan; 45(1):328-339. PubMed ID: 29106741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.