These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17639544)

  • 1. Emulation of racemase activity by employing a pair of stereocomplementary biocatalysts.
    Gruber CC; Nestl BM; Gross J; Hildebrandt P; Bornscheuer UT; Faber K; Kroutil W
    Chemistry; 2007; 13(29):8271-6. PubMed ID: 17639544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic resolution and stereoinversion of secondary alcohols by chemo-enzymatic processes.
    Azerad R; Buisson D
    Curr Opin Biotechnol; 2000 Dec; 11(6):565-71. PubMed ID: 11102790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification and functional origins of stereocomplementary alcohol dehydrogenases for asymmetric synthesis of chiral secondary alcohols: A review.
    Zhang L; Sun Z; Xu G; Ni Y
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132238. PubMed ID: 38729463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic racemization of amines catalyzed by enantiocomplementary ω-transaminases.
    Koszelewski D; Grischek B; Glueck SM; Kroutil W; Faber K
    Chemistry; 2011 Jan; 17(1):378-83. PubMed ID: 21207634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary Alcohol Dehydrogenases from Thermoanaerobacter pseudoethanolicus and Thermoanaerobacter brockii as Robust Catalysts.
    Musa MM; Vieille C; Phillips RS
    Chembiochem; 2021 Jun; 22(11):1884-1893. PubMed ID: 33594812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diastereoisomerism, contact points, and chiral selectivity: a four-site saga.
    Bentley R
    Arch Biochem Biophys; 2003 Jun; 414(1):1-12. PubMed ID: 12745248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting racemases.
    Femmer C; Bechtold M; Roberts TM; Panke S
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7423-36. PubMed ID: 27444433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding nature's strategies for enzyme-catalyzed racemization and epimerization.
    Tanner ME
    Acc Chem Res; 2002 Apr; 35(4):237-46. PubMed ID: 11955052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New enzymes for biotransformations: microbial alkyl sulfatases displaying stereo- and enantioselectivity.
    Gadler P; Faber K
    Trends Biotechnol; 2007 Feb; 25(2):83-8. PubMed ID: 17150269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme catalysed deracemisation and dynamic kinetic resolution reactions.
    Turner NJ
    Curr Opin Chem Biol; 2004 Apr; 8(2):114-9. PubMed ID: 15062770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Stereoselective Reduction of Prochiral Ketones by using an F
    Martin C; Tjallinks G; Trajkovic M; Fraaije MW
    Chembiochem; 2021 Jan; 22(1):156-159. PubMed ID: 32935896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redefining the minimal substrate tolerance of mandelate racemase. Racemization of trifluorolactate.
    Nagar M; Narmandakh A; Khalak Y; Bearne SL
    Biochemistry; 2011 Oct; 50(41):8846-52. PubMed ID: 21894901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic deuterium- and hydrogen-transfer using over-expressed ADH-'A': enhanced stereoselectivity and 2H-labeled chiral alcohols.
    Edegger K; Gruber CC; Poessl TM; Wallner SR; Lavandera I; Faber K; Niehaus F; Eck J; Oehrlein R; Hafner A; Kroutil W
    Chem Commun (Camb); 2006 Jun; (22):2402-4. PubMed ID: 16733594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact and relevance of alcohol dehydrogenase enantioselectivities on biotechnological applications.
    Koesoema AA; Standley DM; Senda T; Matsuda T
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):2897-2909. PubMed ID: 32060695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The enolase superfamily: a general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids.
    Babbitt PC; Hasson MS; Wedekind JE; Palmer DR; Barrett WC; Reed GH; Rayment I; Ringe D; Kenyon GL; Gerlt JA
    Biochemistry; 1996 Dec; 35(51):16489-501. PubMed ID: 8987982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic racemization of alcohols and amines: An approach for bi-enzymatic dynamic kinetic resolution.
    Musa MM
    Chirality; 2020 Feb; 32(2):147-157. PubMed ID: 31756033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined ruthenium(II) and lipase catalysis for efficient dynamic kinetic resolution of secondary alcohols. Insight into the racemization mechanism.
    Martín-Matute B; Edin M; Bogár K; Kaynak FB; Bäckvall JE
    J Am Chem Soc; 2005 Jun; 127(24):8817-25. PubMed ID: 15954789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols-part II: whole-cell reductions.
    Goldberg K; Schroer K; Lütz S; Liese A
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):249-55. PubMed ID: 17486338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandem concurrent processes: one-pot single-catalyst biohydrogen transfer for the simultaneous preparation of enantiopure secondary alcohols.
    Bisogno FR; Lavandera I; Kroutil W; Gotor V
    J Org Chem; 2009 Feb; 74(4):1730-2. PubMed ID: 19138072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced conversion of racemic alpha-arylalanines to (R)-beta-arylalanines by coupled racemase/aminomutase catalysis.
    Cox BM; Bilsborrow JB; Walker KD
    J Org Chem; 2009 Sep; 74(18):6953-9. PubMed ID: 19711925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.