BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17640525)

  • 1. Slit1a inhibits retinal ganglion cell arborization and synaptogenesis via Robo2-dependent and -independent pathways.
    Campbell DS; Stringham SA; Timm A; Xiao T; Law MY; Baier H; Nonet ML; Chien CB
    Neuron; 2007 Jul; 55(2):231-45. PubMed ID: 17640525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct roles for Robo2 in the regulation of axon and dendrite growth by retinal ganglion cells.
    Hocking JC; Hehr CL; Bertolesi GE; Wu JY; McFarlane S
    Mech Dev; 2010; 127(1-2):36-48. PubMed ID: 19961927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo imaging of synapse formation on a growing dendritic arbor.
    Niell CM; Meyer MP; Smith SJ
    Nat Neurosci; 2004 Mar; 7(3):254-60. PubMed ID: 14758365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robo2 is required for establishment of a precise glomerular map in the zebrafish olfactory system.
    Miyasaka N; Sato Y; Yeo SY; Hutson LD; Chien CB; Okamoto H; Yoshihara Y
    Development; 2005 Mar; 132(6):1283-93. PubMed ID: 15716341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization.
    Campbell DS; Okamoto H
    J Cell Biol; 2013 Nov; 203(4):657-72. PubMed ID: 24385488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GAP43 phosphorylation is critical for growth and branching of retinotectal arbors in zebrafish.
    Leu B; Koch E; Schmidt JT
    Dev Neurobiol; 2010 Nov; 70(13):897-911. PubMed ID: 20669323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robos are required for the correct targeting of retinal ganglion cell axons in the visual pathway of the brain.
    Plachez C; Andrews W; Liapi A; Knoell B; Drescher U; Mankoo B; Zhe L; Mambetisaeva E; Annan A; Bannister L; Parnavelas JG; Richards LJ; Sundaresan V
    Mol Cell Neurosci; 2008 Apr; 37(4):719-30. PubMed ID: 18272390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. astray, a zebrafish roundabout homolog required for retinal axon guidance.
    Fricke C; Lee JS; Geiger-Rudolph S; Bonhoeffer F; Chien CB
    Science; 2001 Apr; 292(5516):507-10. PubMed ID: 11313496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer).
    Lee JS; von der Hardt S; Rusch MA; Stringer SE; Stickney HL; Talbot WS; Geisler R; Nüsslein-Volhard C; Selleck SB; Chien CB; Roehl H
    Neuron; 2004 Dec; 44(6):947-60. PubMed ID: 15603738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of Islet-2 in the Slit signaling for axonal branching and defasciculation of the sensory neurons in embryonic zebrafish.
    Yeo SY; Miyashita T; Fricke C; Little MH; Yamada T; Kuwada JY; Huh TL; Chien CB; Okamoto H
    Mech Dev; 2004 Apr; 121(4):315-24. PubMed ID: 15110042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robo-Slit interactions regulate longitudinal axon pathfinding in the embryonic vertebrate brain.
    Devine CA; Key B
    Dev Biol; 2008 Jan; 313(1):371-83. PubMed ID: 18061159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labeled lines in the retinotectal system: markers for retinorecipient sublaminae and the retinal ganglion cell subsets that innervate them.
    Yamagata M; Weiner JA; Dulac C; Roth KA; Sanes JR
    Mol Cell Neurosci; 2006 Nov; 33(3):296-310. PubMed ID: 16978878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EphrinB2a in the zebrafish retinotectal system.
    Wagle M; Grunewald B; Subburaju S; Barzaghi C; Le Guyader S; Chan J; Jesuthasan S
    J Neurobiol; 2004 Apr; 59(1):57-65. PubMed ID: 15007827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum.
    Niell CM; Smith SJ
    Neuron; 2005 Mar; 45(6):941-51. PubMed ID: 15797554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation by glycogen synthase kinase-3beta of the arborization field and maturation of retinotectal projection in zebrafish.
    Tokuoka H; Yoshida T; Matsuda N; Mishina M
    J Neurosci; 2002 Dec; 22(23):10324-32. PubMed ID: 12451132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth hormone and its receptor in projection neurons of the chick visual system: retinofugal and tectobulbar tracts.
    Baudet ML; Rattray D; Harvey S
    Neuroscience; 2007 Aug; 148(1):151-63. PubMed ID: 17618059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathfinding and error correction by retinal axons: the role of astray/robo2.
    Hutson LD; Chien CB
    Neuron; 2002 Jan; 33(2):205-17. PubMed ID: 11804569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slit and Robo control the development of dendrites in Drosophila CNS.
    Furrer MP; Vasenkova I; Kamiyama D; Rosado Y; Chiba A
    Development; 2007 Nov; 134(21):3795-804. PubMed ID: 17933790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition.
    Schmidt JT; Buzzard M; Borress R; Dhillon S
    J Neurobiol; 2000 Feb; 42(3):303-14. PubMed ID: 10645970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.