These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 17640672)

  • 1. A perfusion bioreactor for intestinal tissue engineering.
    Kim SS; Penkala R; Abrahimi P
    J Surg Res; 2007 Oct; 142(2):327-31. PubMed ID: 17640672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs.
    Schulz RM; Wüstneck N; van Donkelaar CC; Shelton JC; Bader A
    Biotechnol Bioeng; 2008 Nov; 101(4):714-28. PubMed ID: 18814291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds.
    Jaasma MJ; Plunkett NA; O'Brien FJ
    J Biotechnol; 2008 Feb; 133(4):490-6. PubMed ID: 18221813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Development of rotating perfusion bioreactor system and application for bone tissue engineering].
    Li X; Li D; Wang L; Wang Z; Lu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):66-70. PubMed ID: 17333894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow perfusion culture of human fetal bone cells in large beta-tricalcium phosphate scaffold with controlled architecture.
    Wang L; Hu YY; Wang Z; Li X; Li DC; Lu BH; Xu SF
    J Biomed Mater Res A; 2009 Oct; 91(1):102-13. PubMed ID: 18767058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering.
    Zhang ZY; Teoh SH; Chong WS; Foo TT; Chng YC; Choolani M; Chan J
    Biomaterials; 2009 May; 30(14):2694-704. PubMed ID: 19223070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multifunctional bioreactor for three-dimensional cell (co)-culture.
    Lichtenberg A; Dumlu G; Walles T; Maringka M; Ringes-Lichtenberg S; Ruhparwar A; Mertsching H; Haverich A
    Biomaterials; 2005 Feb; 26(5):555-62. PubMed ID: 15276363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term maintenance of human hepatocytes in oxygen-permeable membrane bioreactor.
    De Bartolo L; Salerno S; Morelli S; Giorno L; Rende M; Memoli B; Procino A; Andreucci VE; Bader A; Drioli E
    Biomaterials; 2006 Sep; 27(27):4794-803. PubMed ID: 16753210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro culture of large bone substitutes in a new bioreactor: importance of the flow direction.
    Olivier V; Hivart P; Descamps M; Hardouin P
    Biomed Mater; 2007 Sep; 2(3):174-80. PubMed ID: 18458469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction.
    Tan Q; Hillinger S; van Blitterswijk CA; Weder W
    Interact Cardiovasc Thorac Surg; 2009 Jan; 8(1):27-30. PubMed ID: 18550604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a bioreactor with stacked sheet shaped organoids of primary hepatocytes.
    Kusumi T; Ishihara K; Mizumoto H; Nakazawa K; Ijima H; Funatsu K; Kajiwara T
    J Biosci Bioeng; 2009 May; 107(5):552-5. PubMed ID: 19393557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Esophagus tissue engineering: in vitro generation of esophageal epithelial cell sheets and viability on scaffold.
    Saxena AK; Ainoedhofer H; Höllwarth ME
    J Pediatr Surg; 2009 May; 44(5):896-901. PubMed ID: 19433165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow cytometric cell cycle analysis of muscle precursor cells cultured within 3D scaffolds in a perfusion bioreactor.
    Flaibani M; Luni C; Sbalchiero E; Elvassore N
    Biotechnol Prog; 2009; 25(1):286-95. PubMed ID: 19224607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chip-based platform for the in vitro generation of tissues in three-dimensional organization.
    Gottwald E; Giselbrecht S; Augspurger C; Lahni B; Dambrowsky N; Truckenmüller R; Piotter V; Gietzelt T; Wendt O; Pfleging W; Welle A; Rolletschek A; Wobus AM; Weibezahn KF
    Lab Chip; 2007 Jun; 7(6):777-85. PubMed ID: 17538721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of small intestinal submucosa as scaffolds for intestinal tissue engineering.
    Lee M; Chang PC; Dunn JC
    J Surg Res; 2008 Jun; 147(2):168-71. PubMed ID: 18406427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes.
    Davis NF; Mooney R; Piterina AV; Callanan A; McGuire BB; Flood HD; McGloughlin TM
    Urology; 2011 Oct; 78(4):954-60. PubMed ID: 21982016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration.
    Dvir T; Benishti N; Shachar M; Cohen S
    Tissue Eng; 2006 Oct; 12(10):2843-52. PubMed ID: 17518653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of tissue-engineered stomach derived from isolated epithelium organoid units.
    Maemura T; Ogawa K; Shin M; Mochizuki H; Vacanti JP
    Transplant Proc; 2004 Jun; 36(5):1595-9. PubMed ID: 15251392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal epithelia in long term gradient culture for biomaterial testing and tissue engineering.
    Minuth WW; Schumacher K; Strehl R
    Biomed Mater Eng; 2005; 15(1-2):51-63. PubMed ID: 15623930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new biodegradable nanocomposite based on polyhedral oligomeric silsesquioxane nanocages: cytocompatibility and investigation into electrohydrodynamic jet fabrication techniques for tissue-engineered scaffolds.
    Raghunath J; Zhang H; Edirisinghe MJ; Darbyshire A; Butler PE; Seifalian AM
    Biotechnol Appl Biochem; 2009 Jan; 52(Pt 1):1-8. PubMed ID: 18402554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.