These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 1764081)
21. Membrane-mediated control of the bacteriorhodopsin photocycle. Mukhopadhyay AK; Bose S; Hendler RW Biochemistry; 1994 Sep; 33(36):10889-95. PubMed ID: 8086405 [TBL] [Abstract][Full Text] [Related]
22. The effect of protein conformation change from alpha(II) to alpha(I) on the bacteriorhodopsin photocycle. Wang J; El-Sayed MA Biophys J; 2000 Apr; 78(4):2031-6. PubMed ID: 10733981 [TBL] [Abstract][Full Text] [Related]
23. Detergent-resistant oligomeric Leptosphaeria rhodopsin is a promising bio-nanomaterial and an alternative to bacteriorhodopsin. Ji L; Ma B; Meng Q; Li L; Liu K; Chen D Biochem Biophys Res Commun; 2017 Nov; 493(1):352-357. PubMed ID: 28887035 [TBL] [Abstract][Full Text] [Related]
24. Light adaptation of bacteriorhodopsin correlates with dielectric spectral kinetics in purple membrane. Mostafa HI Biochem Biophys Res Commun; 2004 Mar; 315(4):857-65. PubMed ID: 14985091 [TBL] [Abstract][Full Text] [Related]
25. Removal of the carboxyl-terminal peptide does not affect refolding or function of bacteriorhodopsin as a light-dependent proton pump. Liao MJ; Khorana HG J Biol Chem; 1984 Apr; 259(7):4194-9. PubMed ID: 6707000 [TBL] [Abstract][Full Text] [Related]
26. Uv-visible spectroscopy of bacteriorhodopsin mutants: substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation. Duñach M; Marti T; Khorana HG; Rothschild KJ Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9873-7. PubMed ID: 2263638 [TBL] [Abstract][Full Text] [Related]
27. Nonionic detergent effects on spectroscopic characteristics and the photocycle of bacteriorhodopsin in purple membranes. Lam E; Packer L Arch Biochem Biophys; 1983 Mar; 221(2):557-64. PubMed ID: 6838208 [TBL] [Abstract][Full Text] [Related]
28. Specific lipid-protein interactions in a novel honeycomb lattice structure of bacteriorhodopsin. Sato H; Takeda K; Tani K; Hino T; Okada T; Nakasako M; Kamiya N; Kouyama T Acta Crystallogr D Biol Crystallogr; 1999 Jul; 55(Pt 7):1251-6. PubMed ID: 10393291 [TBL] [Abstract][Full Text] [Related]
29. Ultrafast photochemistry of light-adapted and dark-adapted bacteriorhodopsin: effects of the initial retinal configuration. Wand A; Friedman N; Sheves M; Ruhman S J Phys Chem B; 2012 Sep; 116(35):10444-52. PubMed ID: 22329764 [TBL] [Abstract][Full Text] [Related]
30. Light-induced reorientation in the purple membrane. Wan C; Qian J; Johnson CK Biophys J; 1993 Aug; 65(2):927-38. PubMed ID: 8218916 [TBL] [Abstract][Full Text] [Related]
31. Photochemical cycle and light-dark adaptation of monomeric and aggregated bacteriorhodopsin in various lipid environments. Dencher NA; Kohl KD; Heyn MP Biochemistry; 1983 Mar; 22(6):1323-34. PubMed ID: 6838856 [TBL] [Abstract][Full Text] [Related]
32. Lipid-induced conformational changes of an integral membrane protein: an infrared spectroscopic study of the effects of Triton X-100 treatment on the purple membrane of Halobacterium halobium ET1001. Barnett SM; Dracheva S; Hendler R; Levin IW Biochemistry; 1996 Apr; 35(14):4558-67. PubMed ID: 8605206 [TBL] [Abstract][Full Text] [Related]
34. Crystal structure of the 13-cis isomer of bacteriorhodopsin in the dark-adapted state. Nishikawa T; Murakami M; Kouyama T J Mol Biol; 2005 Sep; 352(2):319-28. PubMed ID: 16084526 [TBL] [Abstract][Full Text] [Related]
35. Kinetics of purple membrane dark-adaptation in the presence of Triton X-100. González-Mañas JM; Goñi FM; Tribout M; Paredes S Arch Biochem Biophys; 1990 Nov; 282(2):239-43. PubMed ID: 2241147 [TBL] [Abstract][Full Text] [Related]
36. Combined optical and photoelectric study of the photocycle of 13-cis bacteriorhodopsin. Gergely C; Ganea C; Váró G Biophys J; 1994 Aug; 67(2):855-61. PubMed ID: 7948698 [TBL] [Abstract][Full Text] [Related]
37. High production of bacteriorhodopsin from wild type Halobacterium salinarum. Seyedkarimi MS; Aramvash A; Ramezani R Extremophiles; 2015 Sep; 19(5):1021-8. PubMed ID: 26254806 [TBL] [Abstract][Full Text] [Related]
38. Effect of fluorescamine modification of purple membranes on exciton coupling and light-to-dark adaptation. Lam E; Packer L Biochem Biophys Res Commun; 1981 Jul; 101(2):464-71. PubMed ID: 7306090 [No Abstract] [Full Text] [Related]
39. Coupling between the retinal thermal isomerization and the Glu194 residue of bacteriorhodopsin. Lazarova T; Querol E; Padrós E Photochem Photobiol; 2009; 85(2):617-23. PubMed ID: 19267876 [TBL] [Abstract][Full Text] [Related]
40. Light and dark adaptation of halorhodopsin. Kamo N; Hazemoto N; Kobatake Y; Mukohata Y Arch Biochem Biophys; 1985 Apr; 238(1):90-6. PubMed ID: 3985630 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]