These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 17641221)

  • 1. An artificial neural network model of energy expenditure using nonintegrated acceleration signals.
    Rothney MP; Neumann M; Béziat A; Chen KY
    J Appl Physiol (1985); 2007 Oct; 103(4):1419-27. PubMed ID: 17641221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of low-intensity physical activity by triaxial accelerometry.
    Midorikawa T; Tanaka S; Kaneko K; Koizumi K; Ishikawa-Takata K; Futami J; Tabata I
    Obesity (Silver Spring); 2007 Dec; 15(12):3031-8. PubMed ID: 18198312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of children's activity type with accelerometer-based neural networks.
    de Vries SI; Engels M; Garre FG
    Med Sci Sports Exerc; 2011 Oct; 43(10):1994-9. PubMed ID: 21448085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth.
    Choi L; Chen KY; Acra SA; Buchowski MS
    J Appl Physiol (1985); 2010 Feb; 108(2):314-27. PubMed ID: 19959770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field validation of the MTI Actigraph and BodyMedia armband monitor using the IDEEA monitor.
    Welk GJ; McClain JJ; Eisenmann JC; Wickel EE
    Obesity (Silver Spring); 2007 Apr; 15(4):918-28. PubMed ID: 17426327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracmor system for measuring walking energy expenditure.
    Levine J; Melanson EL; Westerterp KR; Hill JO
    Eur J Clin Nutr; 2003 Sep; 57(9):1176-80. PubMed ID: 12947439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caltrac versus calorimeter determination of 24-h energy expenditure in female children and adolescents.
    Bray MS; Wong WW; Morrow JR; Butte NF; Pivarnik JM
    Med Sci Sports Exerc; 1994 Dec; 26(12):1524-30. PubMed ID: 7869888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving energy expenditure estimation by using a triaxial accelerometer.
    Chen KY; Sun M
    J Appl Physiol (1985); 1997 Dec; 83(6):2112-22. PubMed ID: 9390989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of the IDEEA™ activity monitor for estimating energy expenditure.
    Whybrow S; Ritz P; Horgan GW; Stubbs RJ
    Br J Nutr; 2013 Jan; 109(1):173-83. PubMed ID: 22464547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living.
    Montoye AH; Mudd LM; Biswas S; Pfeiffer KA
    Med Sci Sports Exerc; 2015 Aug; 47(8):1735-46. PubMed ID: 25494392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A validation of a physical activity monitor for young and older adults.
    Nichols JF; Patterson P; Early T
    Can J Sport Sci; 1992 Dec; 17(4):299-303. PubMed ID: 1330268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity.
    de Jonge L; Nguyen T; Smith SR; Zachwieja JJ; Roy HJ; Bray GA
    Int J Obes Relat Metab Disord; 2001 Jul; 25(7):929-34. PubMed ID: 11443488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validity of hip-mounted uniaxial accelerometry with heart-rate monitoring vs. triaxial accelerometry in the assessment of free-living energy expenditure in young children: the IDEFICS Validation Study.
    Ojiambo R; Konstabel K; Veidebaum T; Reilly J; Verbestel V; Huybrechts I; Sioen I; Casajús JA; Moreno LA; Vicente-Rodriguez G; Bammann K; Tubic BM; Marild S; Westerterp K; Pitsiladis YP;
    J Appl Physiol (1985); 2012 Nov; 113(10):1530-6. PubMed ID: 22995396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actigraph GT3X: validation and determination of physical activity intensity cut points.
    Santos-Lozano A; Santín-Medeiros F; Cardon G; Torres-Luque G; Bailón R; Bergmeir C; Ruiz JR; Lucia A; Garatachea N
    Int J Sports Med; 2013 Nov; 34(11):975-82. PubMed ID: 23700330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the TriTrac-R3D accelerometer and a self-report activity diary with heart-rate monitoring for the assessment of energy expenditure in children.
    Rodriguez G; Béghin L; Michaud L; Moreno LA; Turck D; Gottrand F
    Br J Nutr; 2002 Jun; 87(6):623-31. PubMed ID: 12067433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents.
    Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF
    J Appl Physiol (1985); 2010 Jan; 108(1):128-36. PubMed ID: 19892930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm.
    Ohkawara K; Oshima Y; Hikihara Y; Ishikawa-Takata K; Tabata I; Tanaka S
    Br J Nutr; 2011 Jun; 105(11):1681-91. PubMed ID: 21262061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.