BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 17641223)

  • 1. Classical eyeblink conditioning during acute hypobaric hypoxia is improved in acclimatized mice and involves Fos expression in selected brain areas.
    López-Ramos JC; Yi PJ; Eleore L; Madroñal N; Rueda A; Delgado-García JM
    J Appl Physiol (1985); 2007 Nov; 103(5):1479-87. PubMed ID: 17641223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altitude acclimatization improves submaximal cognitive performance in mice and involves an imbalance of the cholinergic system.
    Guerra-Narbona R; Delgado-García JM; López-Ramos JC
    J Appl Physiol (1985); 2013 Jun; 114(12):1705-16. PubMed ID: 23599398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine A
    Chen PZ; He WJ; Zhu ZR; E GJ; Xu G; Chen DW; Gao YQ
    Behav Brain Res; 2018 Jul; 347():99-107. PubMed ID: 29501623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acclimatization to middle altitude hypoxia protects against developmental and cognitive deficits caused by acute fetal hypoxia in mice.
    Liu HL; Sun YM; Li CY; Niu HC; Su M; Wang JK
    Sheng Li Xue Bao; 2017 Apr; 69(2):146-158. PubMed ID: 28435973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B.
    Malik MT; Peng YJ; Kline DD; Adhikary G; Prabhakar NR
    Respir Physiol Neurobiol; 2005 Jan; 145(1):23-31. PubMed ID: 15652785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute and chronic exposition of mice to severe hypoxia: the role of acclimatization against skeletal muscle oxidative stress.
    Magalhães J; Ascensão A; Soares JM; Ferreira R; Neuparth MJ; Oliveira J; Amado F; Marques F; Duarte JA
    Int J Sports Med; 2005 Mar; 26(2):102-9. PubMed ID: 15726484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial function in rat cerebral cortex and hippocampus after short- and long-term hypobaric hypoxia.
    Czerniczyniec A; La Padula P; Bustamante J; Karadayian AG; Lores-Arnaiz S; Costa LE
    Brain Res; 2015 Feb; 1598():66-75. PubMed ID: 25527397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cognitive and emotional processing at high altitude.
    Pavlicek V; Schirlo C; Nebel A; Regard M; Koller EA; Brugger P
    Aviat Space Environ Med; 2005 Jan; 76(1):28-33. PubMed ID: 15672983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. V
    Loeppky JA; Sheard AC; Salgado RM; Mermier CM
    Physiol Int; 2016 Sep; 103(3):377-391. PubMed ID: 28229643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of Fos immunoreactivity in some catecholaminergic brainstem neurons in rats following high-altitude exposure.
    Kaur C; You Y; Singh J; Peng CM; Ling EA
    J Neurosci Res; 2001 Jan; 63(1):54-63. PubMed ID: 11169614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-course effects and mechanisms of hypobaric hypoxia on nervous system in mice.
    Zhang H; Zhang X; Liu Z; Mei Y; Liu Y; Wei X; Xiao C; Gao Y; Ma Z
    Neurosci Lett; 2023 Mar; 801():137163. PubMed ID: 36868397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascorbic acid and α-tocopherol supplement starting prenatally enhances the resistance of nucleus tractus solitarius neurons to hypobaric hypoxic challenge.
    Wu YC; Wang YJ; Tseng GF
    Brain Struct Funct; 2011 Jun; 216(2):105-22. PubMed ID: 21287201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive performance during short acclimation to severe hypoxia.
    Leifflen D; Poquin D; Savourey G; Barraud PA; Raphel C; Bittel J
    Aviat Space Environ Med; 1997 Nov; 68(11):993-7. PubMed ID: 9383498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of cerebral cortical structures in the classical conditioning of eyelid responses in rabbits.
    Gruart A; Morcuende S; Martínez S; Delgado-García JM
    Neuroscience; 2000; 100(4):719-30. PubMed ID: 11036206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional basis of associative learning and its relationships with long-term potentiation evoked in the involved neural circuits: Lessons from studies in behaving mammals.
    Gruart A; Leal-Campanario R; López-Ramos JC; Delgado-García JM
    Neurobiol Learn Mem; 2015 Oct; 124():3-18. PubMed ID: 25916668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in CNS amine levels by acclimatization to hypobaric hypoxia.
    Hughes MJ; Light KE; Redington T
    Brain Res Bull; 1983 Aug; 11(2):255-8. PubMed ID: 6627045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance during mild acute hypoxia.
    Paul MA; Fraser WD
    Aviat Space Environ Med; 1994 Oct; 65(10 Pt 1):891-9. PubMed ID: 7832729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the influence of chronic hypobaric hypoxia on diaphragmatic myofilament contractile function and phosphorylation in high-altitude deer mice and low-altitude white-footed mice.
    Ding Y; Lyons SA; Scott GR; Gillis TE
    J Comp Physiol B; 2019 Aug; 189(3-4):489-499. PubMed ID: 31278612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential temporal response of hippocampus, cortex and cerebellum to hypobaric hypoxia: a biochemical approach.
    Hota SK; Barhwal K; Singh SB; Ilavazhagan G
    Neurochem Int; 2007; 51(6-7):384-90. PubMed ID: 17531352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of simulated flight hypobaric hypoxia and oxygen inhalation on free radical metabolism in various organs of mice.
    Zhang QJ; Zhan H; Li T; Hao AG; Wan CH; Xin YM
    Space Med Med Eng (Beijing); 1999 Dec; 12(6):414-7. PubMed ID: 12432889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.