These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1764246)

  • 1. Birth and differentiation of reticular neurons in the chick hindbrain: ontogeny of the first neuronal population.
    Sechrist J; Bronner-Fraser M
    Neuron; 1991 Dec; 7(6):947-63. PubMed ID: 1764246
    [No Abstract]   [Full Text] [Related]  

  • 2. Diffusible signals and fasciculated growth in reticulospinal axon pathfinding in the hindbrain.
    Hernández-Montiel HL; Meléndez-Herrera E; Cepeda-Nieto AC; Mejía-Viggiano C; Larriva-Sahd J; Guthrie S; Varela-Echavarría A
    Dev Biol; 2003 Mar; 255(1):99-112. PubMed ID: 12618136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmental patterns of neuronal development in the chick hindbrain.
    Lumsden A; Keynes R
    Nature; 1989 Feb; 337(6206):424-8. PubMed ID: 2644541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homeodomain transcription factors in the development of subsets of hindbrain reticulospinal neurons.
    Cepeda-Nieto AC; Pfaff SL; Varela-Echavarría A
    Mol Cell Neurosci; 2005 Jan; 28(1):30-41. PubMed ID: 15607939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early phenotypic choices by neuronal precursors, revealed by clonal analysis of the chick embryo hindbrain.
    Lumsden A; Clarke JD; Keynes R; Fraser S
    Development; 1994 Jun; 120(6):1581-9. PubMed ID: 8050364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [3H]thymidine autoradiographic study in the transit part from the spinal cord to the medulla oblongata of the chick embryo--the ontogenetic relation between the reticular formation and the spinal cord.
    Kanemitsu A
    Neurosci Lett; 1982 Dec; 34(2):105-10. PubMed ID: 7183947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhombomere interactions control the segmental differentiation of hindbrain neurons.
    Eickholt BJ; Graham A; Lumsden A; Wizenmann A
    Mol Cell Neurosci; 2001 Aug; 18(2):141-8. PubMed ID: 11520176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions.
    Fraser S; Keynes R; Lumsden A
    Nature; 1990 Mar; 344(6265):431-5. PubMed ID: 2320110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancer detection in zebrafish permits the identification of neuronal subtypes that express Hox4 paralogs.
    Punnamoottil B; Kikuta H; Pezeron G; Erceg J; Becker TS; Rinkwitz S
    Dev Dyn; 2008 Aug; 237(8):2195-208. PubMed ID: 18627100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cellular basis of segmentation in the developing hindbrain.
    Lumsden A
    Trends Neurosci; 1990 Aug; 13(8):329-35. PubMed ID: 1699318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defects in tangential neuronal migration of pontine nuclei neurons in the Largemyd mouse are associated with stalled migration in the ventrolateral hindbrain.
    Qu Q; Crandall JE; Luo T; McCaffery PJ; Smith FI
    Eur J Neurosci; 2006 Jun; 23(11):2877-86. PubMed ID: 16819976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glial migratory streams in the developing hindbrain: a slice culture approach.
    King LA; Schwartz NB; Domowicz MS
    J Neurosci Methods; 2009 Feb; 177(1):30-43. PubMed ID: 18948137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. vHnf1 regulates specification of caudal rhombomere identity in the chick hindbrain.
    Aragón F; Vázquez-Echeverría C; Ulloa E; Reber M; Cereghini S; Alsina B; Giraldez F; Pujades C
    Dev Dyn; 2005 Nov; 234(3):567-76. PubMed ID: 16110512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential progenitor dispersal and the spatial origin of early neurons can explain the predominance of single-phenotype clones in the chick hindbrain.
    Clarke JD; Erskine L; Lumsden A
    Dev Dyn; 1998 May; 212(1):14-26. PubMed ID: 9603420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human fetal brain cultures: a model to study neural proliferation, differentiation and immunocompetence.
    Torelli S; Sogos V; Ennas MG; Marcello C; Cocchia D; Gremo F
    Adv Exp Med Biol; 1991; 296():121-34. PubMed ID: 1781322
    [No Abstract]   [Full Text] [Related]  

  • 16. Segmental arrangement of reticulospinal neurons in the goldfish hindbrain.
    Lee RK; Eaton RC; Zottoli SJ
    J Comp Neurol; 1993 Mar; 329(4):539-56. PubMed ID: 8454739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain.
    Clarke JD; Lumsden A
    Development; 1993 May; 118(1):151-62. PubMed ID: 8375332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal differentiation of the early embryonic auditory hindbrain of the chicken in primary culture.
    Kuenzel T; Mönig B; Wagner H; Mey J; Luksch H
    Eur J Neurosci; 2007 Feb; 25(4):974-84. PubMed ID: 17331194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of cell division and interkinetic nuclear migration in the chick embryo hindbrain.
    Guthrie S; Butcher M; Lumsden A
    J Neurobiol; 1991 Oct; 22(7):742-54. PubMed ID: 1722508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A clonal study of the reversible inhibition of muscle differentiation by the halogenated thymidine analog 5-bromodeoxyuridine.
    Coleman JR; Coleman AW; Hartline EJ
    Dev Biol; 1969 Jun; 19(6):527-48. PubMed ID: 5772670
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.