BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 17642513)

  • 1. Conformational flexibility in the flap domains of ligand-free HIV protease.
    Heaslet H; Rosenfeld R; Giffin M; Lin YC; Tam K; Torbett BE; Elder JH; McRee DE; Stout CD
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):866-75. PubMed ID: 17642513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into the mechanisms of drug resistance in HIV-1 protease NL4-3.
    Heaslet H; Kutilek V; Morris GM; Lin YC; Elder JH; Torbett BE; Stout CD
    J Mol Biol; 2006 Mar; 356(4):967-81. PubMed ID: 16403521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flap opening mechanism of HIV-1 protease.
    Tóth G; Borics A
    J Mol Graph Model; 2006 May; 24(6):465-74. PubMed ID: 16188477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations.
    Rose RB; Craik CS; Stroud RM
    Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease.
    Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS
    Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitor binding at the protein interface in crystals of a HIV-1 protease complex.
    Brynda J; Rezácová P; Fábry M; Horejsí M; Stouracová R; Soucek M; Hradílek M; Konvalinka J; Sedlácek J
    Acta Crystallogr D Biol Crystallogr; 2004 Nov; 60(Pt 11):1943-8. PubMed ID: 15502300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Closing of the flaps of HIV-1 protease induced by substrate binding: a model of a flap closing mechanism in retroviral aspartic proteases.
    Tóth G; Borics A
    Biochemistry; 2006 May; 45(21):6606-14. PubMed ID: 16716071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S; Mavromoustakos T; Chronakis N; Papadopoulos MG
    Bioorg Med Chem; 2008 Dec; 16(23):9957-74. PubMed ID: 18996019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative fluctuations of unliganded and substrate-bound HIV-1 protease: a structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations.
    Kurt N; Scott WR; Schiffer CA; Haliloglu T
    Proteins; 2003 May; 51(3):409-22. PubMed ID: 12696052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of ligand-induced flap closing in HIV-1 protease approach X-ray resolution: establishing the role of bound water in the flap closing mechanism.
    Singh G; Senapati S
    Biochemistry; 2008 Oct; 47(40):10657-64. PubMed ID: 18785756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA; Cukier RI
    Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing the accumulation of active- and nonactive-site mutations in the HIV-1 protease.
    Clemente JC; Moose RE; Hemrajani R; Whitford LR; Govindasamy L; Reutzel R; McKenna R; Agbandje-McKenna M; Goodenow MM; Dunn BM
    Biochemistry; 2004 Sep; 43(38):12141-51. PubMed ID: 15379553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crucial roles of the subnanosecond local dynamics of the flap tips in the global conformational changes of HIV-1 protease.
    Li D; Ji B; Hwang K; Huang Y
    J Phys Chem B; 2010 Mar; 114(8):3060-9. PubMed ID: 20143801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants.
    Kozísek M; Bray J; Rezácová P; Sasková K; Brynda J; Pokorná J; Mammano F; Rulísek L; Konvalinka J
    J Mol Biol; 2007 Dec; 374(4):1005-16. PubMed ID: 17977555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative native flap conformation revealed by 2.3 A resolution structure of SIV proteinase.
    Wilderspin AF; Sugrue RJ
    J Mol Biol; 1994 May; 239(1):97-103. PubMed ID: 8196050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility.
    Zoete V; Michielin O; Karplus M
    J Mol Biol; 2002 Jan; 315(1):21-52. PubMed ID: 11771964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIV-1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state.
    Hornak V; Okur A; Rizzo RC; Simmerling C
    J Am Chem Soc; 2006 Mar; 128(9):2812-3. PubMed ID: 16506755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S; Shah K
    In Silico Biol; 2008; 8(5-6):427-47. PubMed ID: 19374129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational study of the resistance of HIV-1 aspartic protease to the inhibitors ABT-538 and VX-478 and design of new analogues.
    Nair AC; Miertus S; Tossi A; Romeo D
    Biochem Biophys Res Commun; 1998 Jan; 242(3):545-51. PubMed ID: 9464253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of drug resistance revealed by the crystal structure of the unliganded HIV-1 protease with F53L mutation.
    Liu F; Kovalevsky AY; Louis JM; Boross PI; Wang YF; Harrison RW; Weber IT
    J Mol Biol; 2006 May; 358(5):1191-9. PubMed ID: 16569415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.