BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 17642516)

  • 1. Structural adaptation of an interacting non-native C-terminal helical extension revealed in the crystal structure of NAD+ synthetase from Bacillus anthracis.
    McDonald HM; Pruett PS; Deivanayagam C; Protasevich II; Carson WM; DeLucas LJ; Brouillette WJ; Brouillette CG
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):891-905. PubMed ID: 17642516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of NH3-dependent NAD+ synthetase from Bacillus subtilis.
    Rizzi M; Nessi C; Mattevi A; Coda A; Bolognesi M; Galizzi A
    EMBO J; 1996 Oct; 15(19):5125-34. PubMed ID: 8895556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of NH3-dependent NAD+ synthetase from Helicobacter pylori.
    Kang GB; Kim YS; Im YJ; Rho SH; Lee JH; Eom SH
    Proteins; 2005 Mar; 58(4):985-8. PubMed ID: 15645437
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural studies of thymidine kinases from Bacillus anthracis and Bacillus cereus provide insights into quaternary structure and conformational changes upon substrate binding.
    Kosinska U; Carnrot C; Sandrini MP; Clausen AR; Wang L; Piskur J; Eriksson S; Eklund H
    FEBS J; 2007 Feb; 274(3):727-37. PubMed ID: 17288553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural snapshots of the KMSKS loop rearrangement for amino acid activation by bacterial tyrosyl-tRNA synthetase.
    Kobayashi T; Takimura T; Sekine R; Kelly VP; Kamata K; Sakamoto K; Nishimura S; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):105-17. PubMed ID: 15663931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase.
    Yaremchuk A; Tukalo M; Grøtli M; Cusack S
    J Mol Biol; 2001 Jun; 309(4):989-1002. PubMed ID: 11399074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The X-ray structure of Escherichia coli enoyl reductase with bound NAD+ at 2.1 A resolution.
    Baldock C; Rafferty JB; Stuitje AR; Slabas AR; Rice DW
    J Mol Biol; 1998 Dec; 284(5):1529-46. PubMed ID: 9878369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure and amide H/D exchange of binary complexes of alcohol dehydrogenase from Bacillus stearothermophilus: insight into thermostability and cofactor binding.
    Ceccarelli C; Liang ZX; Strickler M; Prehna G; Goldstein BM; Klinman JP; Bahnson BJ
    Biochemistry; 2004 May; 43(18):5266-77. PubMed ID: 15122892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray crystal structure of glycinamide ribonucleotide synthetase from Escherichia coli.
    Wang W; Kappock TJ; Stubbe J; Ealick SE
    Biochemistry; 1998 Nov; 37(45):15647-62. PubMed ID: 9843369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural study of Escherichia coli NAD synthetase: overexpression, purification, crystallization, and preliminary crystallographic analysis.
    Ozment C; Barchue J; DeLucas LJ; Chattopadhyay D
    J Struct Biol; 1999 Oct; 127(3):279-82. PubMed ID: 10544053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of an NAD kinase from Archaeoglobus fulgidus in complex with ATP, NAD, or NADP.
    Liu J; Lou Y; Yokota H; Adams PD; Kim R; Kim SH
    J Mol Biol; 2005 Nov; 354(2):289-303. PubMed ID: 16242716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of 7,8-dihydropteroate synthase from Bacillus anthracis: mechanism and novel inhibitor design.
    Babaoglu K; Qi J; Lee RE; White SW
    Structure; 2004 Sep; 12(9):1705-17. PubMed ID: 15341734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of human argininosuccinate synthetase.
    Karlberg T; Collins R; van den Berg S; Flores A; Hammarström M; Högbom M; Holmberg Schiavone L; Uppenberg J
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):279-86. PubMed ID: 18323623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.
    Krajewski WW; Collins R; Holmberg-Schiavone L; Jones TA; Karlberg T; Mowbray SL
    J Mol Biol; 2008 Jan; 375(1):217-28. PubMed ID: 18005987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of Escherichia coli UDPMurNAc-tripeptide d-alanyl-d-alanine-adding enzyme (MurF) at 2.3 A resolution.
    Yan Y; Munshi S; Leiting B; Anderson MS; Chrzas J; Chen Z
    J Mol Biol; 2000 Dec; 304(3):435-45. PubMed ID: 11090285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of the apo and holo forms of formate dehydrogenase from the bacterium Moraxella sp. C-1: towards understanding the mechanism of the closure of the interdomain cleft.
    Shabalin IG; Filippova EV; Polyakov KM; Sadykhov EG; Safonova TN; Tikhonova TV; Tishkov VI; Popov VO
    Acta Crystallogr D Biol Crystallogr; 2009 Dec; 65(Pt 12):1315-25. PubMed ID: 19966418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of Bacillus anthracis ThiI, a tRNA-modifying enzyme containing the predicted RNA-binding THUMP domain.
    Waterman DG; Ortiz-Lombardía M; Fogg MJ; Koonin EV; Antson AA
    J Mol Biol; 2006 Feb; 356(1):97-110. PubMed ID: 16343540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and kinetic properties of a beta-hydroxyacid dehydrogenase involved in nicotinate fermentation.
    Reitz S; Alhapel A; Essen LO; Pierik AJ
    J Mol Biol; 2008 Oct; 382(3):802-11. PubMed ID: 18680749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the Bacillus anthracis nucleoside diphosphate kinase and its characterization reveals an enzyme adapted to perform under stress conditions.
    Misra G; Aggarwal A; Dube D; Zaman MS; Singh Y; Ramachandran R
    Proteins; 2009 Aug; 76(2):496-506. PubMed ID: 19241473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of the apoenzyme of the iron-sulphur cluster-free hydrogenase.
    Pilak O; Mamat B; Vogt S; Hagemeier CH; Thauer RK; Shima S; Vonrhein C; Warkentin E; Ermler U
    J Mol Biol; 2006 May; 358(3):798-809. PubMed ID: 16540118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.