These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1179 related articles for article (PubMed ID: 17643101)
1. Target mimicry provides a new mechanism for regulation of microRNA activity. Franco-Zorrilla JM; Valli A; Todesco M; Mateos I; Puga MI; Rubio-Somoza I; Leyva A; Weigel D; García JA; Paz-Ares J Nat Genet; 2007 Aug; 39(8):1033-7. PubMed ID: 17643101 [TBL] [Abstract][Full Text] [Related]
2. Identification of transcription factors that bind to the 5'-UTR of the barley PHO2 gene. Sega P; Kruszka K; Szewc Ł; Szweykowska-Kulińska Z; Pacak A Plant Mol Biol; 2020 Jan; 102(1-2):73-88. PubMed ID: 31745747 [TBL] [Abstract][Full Text] [Related]
3. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Vaucheret H; Vazquez F; Crété P; Bartel DP Genes Dev; 2004 May; 18(10):1187-97. PubMed ID: 15131082 [TBL] [Abstract][Full Text] [Related]
4. Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Lin WY; Huang TK; Chiou TJ Plant Cell; 2013 Oct; 25(10):4061-74. PubMed ID: 24122828 [TBL] [Abstract][Full Text] [Related]
5. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. Mallory AC; Reinhart BJ; Jones-Rhoades MW; Tang G; Zamore PD; Barton MK; Bartel DP EMBO J; 2004 Aug; 23(16):3356-64. PubMed ID: 15282547 [TBL] [Abstract][Full Text] [Related]
6. Specific effects of microRNAs on the plant transcriptome. Schwab R; Palatnik JF; Riester M; Schommer C; Schmid M; Weigel D Dev Cell; 2005 Apr; 8(4):517-27. PubMed ID: 15809034 [TBL] [Abstract][Full Text] [Related]
7. Target mimics: an embedded layer of microRNA-involved gene regulatory networks in plants. Meng Y; Shao C; Wang H; Jin Y BMC Genomics; 2012 May; 13():197. PubMed ID: 22613869 [TBL] [Abstract][Full Text] [Related]
8. Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Chiou TJ; Aung K; Lin SI; Wu CC; Chiang SF; Su CL Plant Cell; 2006 Feb; 18(2):412-21. PubMed ID: 16387831 [TBL] [Abstract][Full Text] [Related]
9. Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis. Yang X; Zhang H; Li L Plant J; 2012 May; 70(3):421-31. PubMed ID: 22247970 [TBL] [Abstract][Full Text] [Related]
10. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Bari R; Datt Pant B; Stitt M; Scheible WR Plant Physiol; 2006 Jul; 141(3):988-99. PubMed ID: 16679424 [TBL] [Abstract][Full Text] [Related]
11. Mimicry Technology: A Versatile Tool for Small RNA Suppression. Villar-Martin LM; Rubio-Somoza I Methods Mol Biol; 2019; 1932():239-245. PubMed ID: 30701505 [TBL] [Abstract][Full Text] [Related]
13. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana. Eamens AL; Agius C; Smith NA; Waterhouse PM; Wang MB Mol Plant; 2011 Jan; 4(1):157-70. PubMed ID: 20943811 [TBL] [Abstract][Full Text] [Related]
14. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Wang XJ; Reyes JL; Chua NH; Gaasterland T Genome Biol; 2004; 5(9):R65. PubMed ID: 15345049 [TBL] [Abstract][Full Text] [Related]
15. Molecular insights into microRNA-mediated translational repression in plants. Iwakawa HO; Tomari Y Mol Cell; 2013 Nov; 52(4):591-601. PubMed ID: 24267452 [TBL] [Abstract][Full Text] [Related]
16. The role of decapping proteins in the miRNA accumulation in Arabidopsis thaliana. Motomura K; Le QT; Kumakura N; Fukaya T; Takeda A; Watanabe Y RNA Biol; 2012 May; 9(5):644-52. PubMed ID: 22614834 [TBL] [Abstract][Full Text] [Related]
17. Involvement of OsSPX1 in phosphate homeostasis in rice. Wang C; Ying S; Huang H; Li K; Wu P; Shou H Plant J; 2009 Mar; 57(5):895-904. PubMed ID: 19000161 [TBL] [Abstract][Full Text] [Related]
18. pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Aung K; Lin SI; Wu CC; Huang YT; Su CL; Chiou TJ Plant Physiol; 2006 Jul; 141(3):1000-11. PubMed ID: 16679417 [TBL] [Abstract][Full Text] [Related]
19. Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs. Kim S; Yang JY; Xu J; Jang IC; Prigge MJ; Chua NH Plant Cell Physiol; 2008 Nov; 49(11):1634-44. PubMed ID: 18829588 [TBL] [Abstract][Full Text] [Related]
20. Regulatory network of microRNA399 and PHO2 by systemic signaling. Lin SI; Chiang SF; Lin WY; Chen JW; Tseng CY; Wu PC; Chiou TJ Plant Physiol; 2008 Jun; 147(2):732-46. PubMed ID: 18390805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]