These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17643106)

  • 1. High friction on a bubble mattress.
    Steinberger A; Cottin-Bizonne C; Kleimann P; Charlaix E
    Nat Mater; 2007 Sep; 6(9):665-8. PubMed ID: 17643106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.
    Su B; Li M; Lu Q
    Langmuir; 2010 Apr; 26(8):6048-52. PubMed ID: 20000363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-friction flows of liquid at nanopatterned interfaces.
    Cottin-Bizonne C; Barrat JL; Bocquet L; Charlaix E
    Nat Mater; 2003 Apr; 2(4):237-40. PubMed ID: 12690396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale flow on a bubble mattress: effect of surface elasticity.
    Steinberger A; Cottin-Bizonne C; Kleimann P; Charlaix E
    Phys Rev Lett; 2008 Apr; 100(13):134501. PubMed ID: 18517957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures.
    Nizkaya TV; Asmolov ES; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043017. PubMed ID: 25375603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics.
    Joly L; Ybert C; Trizac E; Bocquet L
    J Chem Phys; 2006 Nov; 125(20):204716. PubMed ID: 17144732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained superhydrophobic friction reduction at high liquid pressures and large flows.
    Carlborg CF; van der Wijngaart W
    Langmuir; 2011 Jan; 27(1):487-93. PubMed ID: 21121625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of slip flow on nanobubble-laden surfaces.
    Hyväluoma J; Kunert C; Harting J
    J Phys Condens Matter; 2011 May; 23(18):184106. PubMed ID: 21508490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanorheology: An investigation of the boundary condition at hydrophobic and hydrophilic interfaces.
    Cottin-Bizonne C; Jurine S; Baudry J; Crassous J; Restagno F; Charlaix E
    Eur Phys J E Soft Matter; 2002 Sep; 9(1):47-53. PubMed ID: 15010929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of slippage with tunable bubble mattresses.
    Karatay E; Haase AS; Visser CW; Sun C; Lohse D; Tsai PA; Lammertink RG
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8422-6. PubMed ID: 23650352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanohydrodynamics: the intrinsic flow boundary condition on smooth surfaces.
    Cottin-Bizonne C; Steinberger A; Cross B; Raccurt O; Charlaix E
    Langmuir; 2008 Feb; 24(4):1165-72. PubMed ID: 18266337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.
    Winkel ES; Elbing BR; Ceccio SL; Perlin M; Dowling DR
    J Acoust Soc Am; 2008 May; 123(5):2522-30. PubMed ID: 18529171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH dependence of friction forces between silica surfaces in solutions.
    Taran E; Donose BC; Vakarelski IU; Higashitani K
    J Colloid Interface Sci; 2006 May; 297(1):199-203. PubMed ID: 16289126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability.
    Fang G; Li W; Wang X; Qiao G
    Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Squeezing wetting and nonwetting liquids.
    Samoilov VN; Persson BN
    J Chem Phys; 2004 Jan; 120(4):1997-2004. PubMed ID: 15268334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the Relationship between Boundary Slip and Nanobubbles on a Smooth Hydrophobic Surface.
    Li D; Jing D; Pan Y; Bhushan B; Zhao X
    Langmuir; 2016 Nov; 32(43):11287-11294. PubMed ID: 27684436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective hydrodynamic boundary conditions for microtextured surfaces.
    Mongruel A; Chastel T; Asmolov ES; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):011002. PubMed ID: 23410274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water.
    Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L
    Langmuir; 2012 Oct; 28(40):14261-72. PubMed ID: 22974715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superhydrophobic copper tubes with possible flow enhancement and drag reduction.
    Shirtcliffe NJ; McHale G; Newton MI; Zhang Y
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1316-23. PubMed ID: 20355928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inelastic non-Newtonian flow over heterogeneously slippery surfaces.
    Haase AS; Wood JA; Sprakel LM; Lammertink RG
    Phys Rev E; 2017 Feb; 95(2-1):023105. PubMed ID: 28297838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.