BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17644001)

  • 1. Comparison of "silent" clustered and sparse temporal fMRI acquisitions in tonal and speech perception tasks.
    Zaehle T; Schmidt CF; Meyer M; Baumann S; Baltes C; Boesiger P; Jancke L
    Neuroimage; 2007 Oct; 37(4):1195-204. PubMed ID: 17644001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study.
    Zaehle T; Wüstenberg T; Meyer M; Jäncke L
    Eur J Neurosci; 2004 Nov; 20(9):2447-56. PubMed ID: 15525285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing the interval between volume acquisitions improves "sparse" scanning protocols in event-related auditory fMRI.
    Liem F; Lutz K; Luechinger R; Jäncke L; Meyer M
    Brain Topogr; 2012 Apr; 25(2):182-93. PubMed ID: 22015572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silent and continuous fMRI scanning differentially modulate activation in an auditory language comprehension task.
    Schmidt CF; Zaehle T; Meyer M; Geiser E; Boesiger P; Jancke L
    Hum Brain Mapp; 2008 Jan; 29(1):46-56. PubMed ID: 17318832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal analysis of auditory cortex activation as detected with silent event related fMRI.
    Christensen WF; Yetkin FZ
    Stat Med; 2005 Aug; 24(16):2539-56. PubMed ID: 15909287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing of sub-syllabic speech units in the posterior temporal lobe: an fMRI study.
    Rimol LM; Specht K; Weis S; Savoy R; Hugdahl K
    Neuroimage; 2005 Jul; 26(4):1059-67. PubMed ID: 15894493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmental processing in the human auditory dorsal stream.
    Zaehle T; Geiser E; Alter K; Jancke L; Meyer M
    Brain Res; 2008 Jul; 1220():179-90. PubMed ID: 18096139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of speech-related variance in rapid event-related fMRI using a time-aware acquisition system.
    Mehta S; Grabowski TJ; Razavi M; Eaton B; Bolinger L
    Neuroimage; 2006 Feb; 29(4):1278-93. PubMed ID: 16412665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perception of matching and conflicting audiovisual speech in dyslexic and fluent readers: an fMRI study at 3 T.
    Pekkola J; Laasonen M; Ojanen V; Autti T; Jääskeläinen IP; Kujala T; Sams M
    Neuroimage; 2006 Feb; 29(3):797-807. PubMed ID: 16359873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered processing of acoustic stimuli during sleep: reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study.
    Czisch M; Wetter TC; Kaufmann C; Pollmächer T; Holsboer F; Auer DP
    Neuroimage; 2002 May; 16(1):251-8. PubMed ID: 11969332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex.
    Schönwiesner M; Rübsamen R; von Cramon DY
    Eur J Neurosci; 2005 Sep; 22(6):1521-8. PubMed ID: 16190905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional fields in human auditory cortex revealed by time-resolved fMRI without interference of EPI noise.
    Di Salle F; Formisano E; Seifritz E; Linden DE; Scheffler K; Saulino C; Tedeschi G; Zanella FE; Pepino A; Goebel R; Marciano E
    Neuroimage; 2001 Feb; 13(2):328-38. PubMed ID: 11162273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling for individual differences in fMRI brain activation to tones, syllables, and words.
    Rimol LM; Specht K; Hugdahl K
    Neuroimage; 2006 Apr; 30(2):554-62. PubMed ID: 16343948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating brain response to music: a comparison of different fMRI acquisition schemes.
    Mueller K; Mildner T; Fritz T; Lepsien J; Schwarzbauer C; Schroeter ML; Möller HE
    Neuroimage; 2011 Jan; 54(1):337-43. PubMed ID: 20728550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An fMRI study of verbal self-monitoring: neural correlates of auditory verbal feedback.
    Fu CH; Vythelingum GN; Brammer MJ; Williams SC; Amaro E; Andrew CM; Yágüez L; van Haren NE; Matsumoto K; McGuire PK
    Cereb Cortex; 2006 Jul; 16(7):969-77. PubMed ID: 16195470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FMRI brain activation in a finnish family with specific language impairment compared with a normal control group.
    Hugdahl K; Gundersen H; Brekke C; Thomsen T; Rimol LM; Ersland L; Niemi J
    J Speech Lang Hear Res; 2004 Feb; 47(1):162-72. PubMed ID: 15072536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perceiving identical sounds as speech or non-speech modulates activity in the left posterior superior temporal sulcus.
    Möttönen R; Calvert GA; Jääskeläinen IP; Matthews PM; Thesen T; Tuomainen J; Sams M
    Neuroimage; 2006 Apr; 30(2):563-9. PubMed ID: 16275021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI.
    Petkov CI; Kayser C; Augath M; Logothetis NK
    Magn Reson Imaging; 2009 Oct; 27(8):1065-73. PubMed ID: 19269764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Event-related fMRI of the auditory cortex.
    Belin P; Zatorre RJ; Hoge R; Evans AC; Pike B
    Neuroimage; 1999 Oct; 10(4):417-29. PubMed ID: 10493900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence.
    Seifritz E; Di Salle F; Esposito F; Herdener M; Neuhoff JG; Scheffler K
    Neuroimage; 2006 Feb; 29(3):1013-22. PubMed ID: 16253522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.