These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 17644013)
1. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea. Lu JP; Feng XX; Liu XH; Lu Q; Wang HK; Lin FC Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013 [TBL] [Abstract][Full Text] [Related]
2. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Kim S; Ahn IP; Rho HS; Lee YH Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997 [TBL] [Abstract][Full Text] [Related]
3. A novel gene MGA1 is required for appressorium formation in Magnaporthe grisea. Gupta A; Chattoo BB Fungal Genet Biol; 2007 Nov; 44(11):1157-69. PubMed ID: 17462923 [TBL] [Abstract][Full Text] [Related]
4. MoSNF1 regulates sporulation and pathogenicity in the rice blast fungus Magnaporthe oryzae. Yi M; Park JH; Ahn JH; Lee YH Fungal Genet Biol; 2008 Aug; 45(8):1172-81. PubMed ID: 18595748 [TBL] [Abstract][Full Text] [Related]
5. Characterization of MoLDB1 required for vegetative growth, infection-related morphogenesis, and pathogenicity in the rice blast fungus Magnaporthe oryzae. Li Y; Liang S; Yan X; Wang H; Li D; Soanes DM; Talbot NJ; Wang Z; Wang Z Mol Plant Microbe Interact; 2010 Oct; 23(10):1260-74. PubMed ID: 20831406 [TBL] [Abstract][Full Text] [Related]
6. A Cdc42 ortholog is required for penetration and virulence of Magnaporthe grisea. Zheng W; Zhao Z; Chen J; Liu W; Ke H; Zhou J; Lu G; Darvill AG; Albersheim P; Wu S; Wang Z Fungal Genet Biol; 2009; 46(6-7):450-60. PubMed ID: 19298860 [TBL] [Abstract][Full Text] [Related]
7. MoRic8 Is a novel component of G-protein signaling during plant infection by the rice blast fungus Magnaporthe oryzae. Li Y; Yan X; Wang H; Liang S; Ma WB; Fang MY; Talbot NJ; Wang ZY Mol Plant Microbe Interact; 2010 Mar; 23(3):317-31. PubMed ID: 20121453 [TBL] [Abstract][Full Text] [Related]
8. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Odenbach D; Breth B; Thines E; Weber RW; Anke H; Foster AJ Mol Microbiol; 2007 Apr; 64(2):293-307. PubMed ID: 17378924 [TBL] [Abstract][Full Text] [Related]
9. Analysis of genes expressed during rice-Magnaporthe grisea interactions. Kim S; Ahn IP; Lee YH Mol Plant Microbe Interact; 2001 Nov; 14(11):1340-6. PubMed ID: 11763134 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of infection of the rice blast fungus by halisulfate 1, an isocitrate lyase inhibitor. Shin DS; Lee TH; Lee HS; Shin J; Oh KB FEMS Microbiol Lett; 2007 Jul; 272(1):43-7. PubMed ID: 17456183 [TBL] [Abstract][Full Text] [Related]
11. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice. Moreno AB; Peñas G; Rufat M; Bravo JM; Estopà M; Messeguer J; San Segundo B Mol Plant Microbe Interact; 2005 Sep; 18(9):960-72. PubMed ID: 16167766 [TBL] [Abstract][Full Text] [Related]
12. [Characterization of oxysterol binding protein homolog MgORP1 in the rice blast fungus Magnaporthe grisea]. Chunhua L; Fucong Z Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1160-7. PubMed ID: 19062638 [TBL] [Abstract][Full Text] [Related]
13. Transposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea. Villalba F; Lebrun MH; Hua-Van A; Daboussi MJ; Grosjean-Cournoyer MC Mol Plant Microbe Interact; 2001 Mar; 14(3):308-15. PubMed ID: 11277428 [TBL] [Abstract][Full Text] [Related]
14. Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity. Collemare J; Billard A; Böhnert HU; Lebrun MH Mycol Res; 2008 Feb; 112(Pt 2):207-15. PubMed ID: 18272356 [TBL] [Abstract][Full Text] [Related]
16. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Veneault-Fourrey C; Barooah M; Egan M; Wakley G; Talbot NJ Science; 2006 Apr; 312(5773):580-3. PubMed ID: 16645096 [TBL] [Abstract][Full Text] [Related]
17. Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Fang EG; Dean RA Mol Plant Microbe Interact; 2000 Nov; 13(11):1214-27. PubMed ID: 11059488 [TBL] [Abstract][Full Text] [Related]
18. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Kang S; Lebrun MH; Farrall L; Valent B Mol Plant Microbe Interact; 2001 May; 14(5):671-4. PubMed ID: 11332731 [TBL] [Abstract][Full Text] [Related]
19. Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Villalba F; Collemare J; Landraud P; Lambou K; Brozek V; Cirer B; Morin D; Bruel C; Beffa R; Lebrun MH Fungal Genet Biol; 2008 Jan; 45(1):68-75. PubMed ID: 17716934 [TBL] [Abstract][Full Text] [Related]
20. SPM1 encoding a vacuole-localized protease is required for infection-related autophagy of the rice blast fungus Magnaporthe oryzae. Saitoh H; Fujisawa S; Ito A; Mitsuoka C; Berberich T; Tosa Y; Asakura M; Takano Y; Terauchi R FEMS Microbiol Lett; 2009 Nov; 300(1):115-21. PubMed ID: 19765082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]