These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 17644331)
1. Alpha-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Rajagopalan G; Krishnan C Bioresour Technol; 2008 May; 99(8):3044-50. PubMed ID: 17644331 [TBL] [Abstract][Full Text] [Related]
2. Hyper-production of alpha-amylase from agro-residual medium with high-glucose in SSF using catabolite derepressed Bacillus subtilis KCC103. Rajagopalan G; Krishnan C J Basic Microbiol; 2010 Aug; 50(4):336-43. PubMed ID: 20586062 [TBL] [Abstract][Full Text] [Related]
3. Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes. Nagarajan DR; Krishnan C Protein Expr Purif; 2010 Mar; 70(1):122-8. PubMed ID: 19815075 [TBL] [Abstract][Full Text] [Related]
4. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Martín C; Marcet M; Almazán O; Jönsson LJ Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451 [TBL] [Abstract][Full Text] [Related]
5. Purification and characterization of a maltooligosaccharide-forming alpha-amylase from a new Bacillus subtilis KCC103. Nagarajan DR; Rajagopalan G; Krishnan C Appl Microbiol Biotechnol; 2006 Dec; 73(3):591-7. PubMed ID: 16850297 [TBL] [Abstract][Full Text] [Related]
6. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media. Martini C; Tauk-Tornisielo SM; Codato CB; Bastos RG; Ceccato-Antonini SR World J Microbiol Biotechnol; 2016 May; 32(5):80. PubMed ID: 27038950 [TBL] [Abstract][Full Text] [Related]
7. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Rao RS; Jyothi ChP; Prakasham RS; Sarma PN; Rao LV Bioresour Technol; 2006 Oct; 97(15):1974-8. PubMed ID: 16242318 [TBL] [Abstract][Full Text] [Related]
8. Acid hydrolysis of sugarcane bagasse for lactic acid production. Laopaiboon P; Thani A; Leelavatcharamas V; Laopaiboon L Bioresour Technol; 2010 Feb; 101(3):1036-43. PubMed ID: 19766480 [TBL] [Abstract][Full Text] [Related]
9. Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Brienzo M; Carvalho W; Milagres AM Appl Biochem Biotechnol; 2010 Oct; 162(4):1195-205. PubMed ID: 20066571 [TBL] [Abstract][Full Text] [Related]
10. [Cultivation of the producer of alpha-amylase Bacillus subtilis under batch and continuous conditions]. Lirova SA; Ermakova LM; Rabotnova IL; Khovrychev MP Mikrobiologiia; 1988; 57(5):740-4. PubMed ID: 3150517 [TBL] [Abstract][Full Text] [Related]
11. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Tsigie YA; Wang CY; Truong CT; Ju YH Bioresour Technol; 2011 Oct; 102(19):9216-22. PubMed ID: 21757339 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Rudolf A; Baudel H; Zacchi G; Hahn-Hägerdal B; Lidén G Biotechnol Bioeng; 2008 Mar; 99(4):783-90. PubMed ID: 17787015 [TBL] [Abstract][Full Text] [Related]
13. [Amylase formation in a periodic and continuous culture of Bacillus subtilis]. Pazlarova Ia; Fencl Z; Tsaplina IA; Egorova LA; Loginova LG Mikrobiologiia; 1977; 46(3):450-5. PubMed ID: 408583 [TBL] [Abstract][Full Text] [Related]
14. Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides. Mu J; Li S; Chen D; Xu H; Han F; Feng B; Li Y Bioresour Technol; 2015 Jun; 185():99-105. PubMed ID: 25768412 [TBL] [Abstract][Full Text] [Related]
15. [Utilization of sugar cane bagasse hydrolysates for xylitol production by yeast]. Zhang HR; Zeng JZ; He CX; Fang H; Cai AH Sheng Wu Gong Cheng Xue Bao; 2002 Nov; 18(6):724-8. PubMed ID: 12674644 [TBL] [Abstract][Full Text] [Related]
16. Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Carvalho W; Silva SS; Converti A; Vitolo M Biotechnol Bioeng; 2002 Jul; 79(2):165-9. PubMed ID: 12115432 [TBL] [Abstract][Full Text] [Related]
17. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis. Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131 [TBL] [Abstract][Full Text] [Related]
18. Effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate and its use as a source of xylose for xylitol bioproduction. Silva SS; Matos ZR; Carvalho W Biotechnol Prog; 2005; 21(5):1449-52. PubMed ID: 16209549 [TBL] [Abstract][Full Text] [Related]
19. Kinetic behavior of Candida guilliermondii yeast during xylitol production from Brewer's spent grain hemicellulosic hydrolysate. Mussatto SI; Dragone G; Roberto IC Biotechnol Prog; 2005; 21(4):1352-6. PubMed ID: 16080723 [TBL] [Abstract][Full Text] [Related]
20. Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Hernández-Salas JM; Villa-Ramírez MS; Veloz-Rendón JS; Rivera-Hernández KN; González-César RA; Plascencia-Espinosa MA; Trejo-Estrada SR Bioresour Technol; 2009 Feb; 100(3):1238-45. PubMed ID: 19000863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]