These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17644357)

  • 1. Snakes survive starvation by employing supply- and demand-side economic strategies.
    McCue MD
    Zoology (Jena); 2007; 110(4):318-27. PubMed ID: 17644357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Western diamondback rattlesnakes demonstrate physiological and biochemical strategies for tolerating prolonged starvation.
    McCue MD
    Physiol Biochem Zool; 2007; 80(1):25-34. PubMed ID: 17160877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable isotopes may provide evidence for starvation in reptiles.
    McCue MD; Pollock ED
    Rapid Commun Mass Spectrom; 2008 Aug; 22(15):2307-14. PubMed ID: 18613003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prey envenomation does not improve digestive performance in western diamondback rattlesnakes (Crotalus atrox).
    McCue MD
    J Exp Zool A Ecol Genet Physiol; 2007 Oct; 307(10):568-77. PubMed ID: 17671964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid analyses may provide insight into the progression of starvation among squamate reptiles.
    McCue MD
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Oct; 151(2):239-46. PubMed ID: 18657629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuel switching and energy partitioning during the postprandial metabolic response in the ball python (Python regius).
    Waas S; Werner RA; Starck JM
    J Exp Biol; 2010 Apr; 213(Pt 8):1266-71. PubMed ID: 20348338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive regulation of digestive performance in the genus Python.
    Ott BD; Secor SM
    J Exp Biol; 2007 Jan; 210(Pt 2):340-56. PubMed ID: 17210969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of two species of clams, Ruditapes decussatus and Venerupis pullastra, to starvation: physiological and biochemical parameters.
    Albentosa M; Fernández-Reiriz MJ; Labarta U; Pérez-Camacho A
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Feb; 146(2):241-9. PubMed ID: 17196861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics and space use: intraspecific and interspecific comparisons of movements and home ranges of two Colubrid snakes.
    Carfagno GL; Weatherhead PJ
    J Anim Ecol; 2008 Mar; 77(2):416-24. PubMed ID: 18254921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological respiratory diffusion capacity of the lungs of ball pythons (Python regius).
    Starck JM; Aupperle H; Kiefer I; Weimer I; Krautwald-Junghanns ME; Pees M
    Zoology (Jena); 2012 Aug; 115(4):245-54. PubMed ID: 22770588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of body mass, meal size, fast length, and temperature on specific dynamic action in the timber rattlesnake (Crotalus horridus).
    Zaidan F; Beaupre SJ
    Physiol Biochem Zool; 2003; 76(4):447-58. PubMed ID: 13130425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water exchange and permeability properties of the skin in three species of amphibious sea snakes (Laticauda spp.).
    Lillywhite HB; Menon JG; Menon GK; Sheehy CM; Tu MC
    J Exp Biol; 2009 Jun; 212(Pt 12):1921-9. PubMed ID: 19483010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of food supplementation on the physiological ecology of female Western diamond-backed rattlesnakes (Crotalus atrox).
    Taylor EN; Malawy MA; Browning DM; Lemar SV; DeNardo DF
    Oecologia; 2005 Jun; 144(2):206-13. PubMed ID: 15800735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches.
    Calvete JJ; Fasoli E; Sanz L; Boschetti E; Righetti PG
    J Proteome Res; 2009 Jun; 8(6):3055-67. PubMed ID: 19371136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma concentrations of chloramphenicol in snakes.
    Clark CH; Rogers ED; Milton JL
    Am J Vet Res; 1985 Dec; 46(12):2654-7. PubMed ID: 4083608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The snakes of Senegal: an annotated species list].
    Trape JF; Mané Y
    Bull Soc Pathol Exot; 2002 Aug; 95(3):148-50. PubMed ID: 12404856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling of CO2 production in the timber rattlesnake (Crotalus horridus), with comments on cost of growth in neonates and comparative patterns.
    Beaupre SJ; Zaidan F
    Physiol Biochem Zool; 2001; 74(5):757-68. PubMed ID: 11517461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological importance of the coronary arterial blood supply to the rattlesnake heart.
    Hagensen MK; Abe AS; Falk E; Wang T
    J Exp Biol; 2008 Nov; 211(Pt 22):3588-93. PubMed ID: 18978223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From physiology to fitness: the costs of a defensive adaptation in rattlesnakes.
    Moon BR
    Physiol Biochem Zool; 2006; 79(1):133-9. PubMed ID: 16380934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms controlling venom expulsion in the western diamondback rattlesnake, Crotalus atrox.
    Young BA; Kardong KV
    J Exp Zool A Ecol Genet Physiol; 2007 Jan; 307(1):18-27. PubMed ID: 17094108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.