BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1764447)

  • 1. Glucose transport of Haloferax volcanii requires the Na(+)-electrochemical potential gradient and inhibitors for the mammalian glucose transporter inhibit the transport.
    Tawara E; Kamo N
    Biochim Biophys Acta; 1991 Dec; 1070(2):293-9. PubMed ID: 1764447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochalasin B binding to rabbit proximal tubular basolateral membranes.
    Cheung PT; Hammerman MR
    Kidney Int; 1989 Jun; 35(6):1290-4. PubMed ID: 2770109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.
    Hopfer U; Sigrist-Nelson K; Ammann E; Murer H
    J Cell Physiol; 1976 Dec; 89(4):805-10. PubMed ID: 137908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorption of sugars and amino acids by the epidermis of Aphidius ervi larvae.
    Giordana B; Milani A; Grimaldi A; Farneti R; Casartelli M; Ambrosecchio MR; Digilio MC; Leonardi MG; de Eguileor M; Pennacchio F
    J Insect Physiol; 2003 Dec; 49(12):1115-24. PubMed ID: 14624883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose transport in primary cultured neurons.
    Heidenrich KA; Gilmore PR; Garvey WT
    J Neurosci Res; 1989 Apr; 22(4):397-407. PubMed ID: 2760941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of glucose transport in neuronal cells and astrocytes from rat brain in primary culture.
    Hara M; Matsuda Y; Hirai K; Okumura N; Nakagawa H
    J Neurochem; 1989 Mar; 52(3):902-8. PubMed ID: 2537381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that the glucose transporter serves as a water channel in J774 macrophages.
    Fischbarg J; Kuang KY; Hirsch J; Lecuona S; Rogozinski L; Silverstein SC; Loike J
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8397-401. PubMed ID: 2813396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarity of transport of 2-deoxy-D-glucose and D-glucose by cultured renal epithelia (LLC-PK1).
    Miller JH; Mullin JM; McAvoy E; Kleinzeller A
    Biochim Biophys Acta; 1992 Oct; 1110(2):209-17. PubMed ID: 1390850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of glucose uptake in animal cells. Studies using plasma membrane vesicles isolated from nontransformed and simian virus 40-transformed mouse fibroblast cultures.
    Lever JE
    J Biol Chem; 1979 Apr; 254(8):2961-7. PubMed ID: 218958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles.
    Quick M; Tomasevic J; Wright EM
    Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specificity of glucose transport in Trypanosoma brucei. Effective inhibition by phloretin and cytochalasin B.
    Seyfang A; Duszenko M
    Eur J Biochem; 1991 Nov; 202(1):191-6. PubMed ID: 1935976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose transport by uterine plasma membranes.
    Meier DA; Garner CW
    Biochim Biophys Acta; 1985 Apr; 814(2):341-6. PubMed ID: 4038886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of glucose transport inhibitors on vincristine efflux in multidrug-resistant murine erythroleukaemia cells overexpressing the multidrug resistance-associated protein (MRP) and two glucose transport proteins, GLUT1 and GLUT3.
    Martell RL; Slapak CA; Levy SB
    Br J Cancer; 1997; 75(2):161-8. PubMed ID: 9010020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitated glucose transporters play a crucial role throughout mouse preimplantation embryo development.
    Leppens-Luisier G; Urner F; Sakkas D
    Hum Reprod; 2001 Jun; 16(6):1229-36. PubMed ID: 11387297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of 2-deoxy-D-glucose transport into cultured mouse neuroblastoma cells.
    Walum E; Edström A
    Exp Cell Res; 1976 Jan; 97():15-22. PubMed ID: 1245193
    [No Abstract]   [Full Text] [Related]  

  • 16. The Na+-independent D-glucose transporter in the enterocyte basolateral membrane: orientation and cytochalasin B binding characteristics.
    Maenz DD; Cheeseman CI
    J Membr Biol; 1987; 97(3):259-66. PubMed ID: 3625759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT; Hammerman MR
    Am J Physiol; 1988 May; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phloridzin and phloretin inhibition of 2-deoxy-D-glucose uptake by tumor cells in vitro and in vivo.
    Nelson JA; Falk RE
    Anticancer Res; 1993; 13(6A):2293-9. PubMed ID: 8297149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of 1,5-anhydro-D-glucitol across plasma membranes in rat hepatoma cells.
    Suzuki M; Akanuma H; Akanuma Y
    J Biochem; 1988 Dec; 104(6):956-9. PubMed ID: 3243769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [14C]-2-deoxyglucose uptake studies in Leydig cells.
    Murono EP; Lin T; Osterman J
    Andrologia; 1986; 18(6):587-94. PubMed ID: 3813047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.