These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 17644595)
1. Specificity and regulation of interaction between the PII and AmtB1 proteins in Rhodospirillum rubrum. Wolfe DM; Zhang Y; Roberts GP J Bacteriol; 2007 Oct; 189(19):6861-9. PubMed ID: 17644595 [TBL] [Abstract][Full Text] [Related]
2. Interaction of the signal transduction protein GlnJ with the cellular targets AmtB1, GlnE and GlnD in Rhodospirillum rubrum: dependence on manganese, 2-oxoglutarate and the ADP/ATP ratio. Teixeira PF; Jonsson A; Frank M; Wang H; Nordlund S Microbiology (Reading); 2008 Aug; 154(Pt 8):2336-2347. PubMed ID: 18667566 [TBL] [Abstract][Full Text] [Related]
3. Molecular basis for the distinct divalent cation requirement in the uridylylation of the signal transduction proteins GlnJ and GlnB from Rhodospirillum rubrum. Teixeira PF; Dominguez-Martin MA; Nordlund S BMC Microbiol; 2012 Jul; 12():136. PubMed ID: 22769741 [TBL] [Abstract][Full Text] [Related]
4. Effect of AmtB homologues on the post-translational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum. Zhang Y; Wolfe DM; Pohlmann EL; Conrad MC; Roberts GP Microbiology (Reading); 2006 Jul; 152(Pt 7):2075-2089. PubMed ID: 16804182 [TBL] [Abstract][Full Text] [Related]
5. Identification of Rhodospirillum rubrum GlnB variants that are altered in their ability to interact with different targets in response to nitrogen status signals. Zhu Y; Conrad MC; Zhang Y; Roberts GP J Bacteriol; 2006 Mar; 188(5):1866-74. PubMed ID: 16484197 [TBL] [Abstract][Full Text] [Related]
6. Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status. Zhang Y; Pohlmann EL; Ludden PW; Roberts GP J Bacteriol; 2001 Nov; 183(21):6159-68. PubMed ID: 11591658 [TBL] [Abstract][Full Text] [Related]
7. Uridylylation of Herbaspirillum seropedicae GlnB and GlnK proteins is differentially affected by ATP, ADP and 2-oxoglutarate in vitro. Bonatto AC; Souza EM; Oliveira MA; Monteiro RA; Chubatsu LS; Huergo LF; Pedrosa FO Arch Microbiol; 2012 Aug; 194(8):643-52. PubMed ID: 22382722 [TBL] [Abstract][Full Text] [Related]
8. Identification of critical residues in GlnB for its activation of NifA activity in the photosynthetic bacterium Rhodospirillum rubrum. Zhang Y; Pohlmann EL; Roberts GP Proc Natl Acad Sci U S A; 2004 Mar; 101(9):2782-7. PubMed ID: 14970346 [TBL] [Abstract][Full Text] [Related]
9. Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A. Gruswitz F; O'Connell J; Stroud RM Proc Natl Acad Sci U S A; 2007 Jan; 104(1):42-7. PubMed ID: 17190799 [TBL] [Abstract][Full Text] [Related]
10. Control of AmtB-GlnK complex formation by intracellular levels of ATP, ADP, and 2-oxoglutarate. Radchenko MV; Thornton J; Merrick M J Biol Chem; 2010 Oct; 285(40):31037-45. PubMed ID: 20639578 [TBL] [Abstract][Full Text] [Related]
11. In vitro studies of the uridylylation of the three PII protein paralogs from Rhodospirillum rubrum: the transferase activity of R. rubrum GlnD is regulated by alpha-ketoglutarate and divalent cations but not by glutamine. Jonsson A; Nordlund S J Bacteriol; 2007 May; 189(9):3471-8. PubMed ID: 17337583 [TBL] [Abstract][Full Text] [Related]
13. In vitro analysis of the Escherichia coli AmtB-GlnK complex reveals a stoichiometric interaction and sensitivity to ATP and 2-oxoglutarate. Durand A; Merrick M J Biol Chem; 2006 Oct; 281(40):29558-67. PubMed ID: 16864585 [TBL] [Abstract][Full Text] [Related]
14. ADP-ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB-dependent membrane sequestration of DraG. Huergo LF; Souza EM; Araujo MS; Pedrosa FO; Chubatsu LS; Steffens MB; Merrick M Mol Microbiol; 2006 Jan; 59(1):326-37. PubMed ID: 16359338 [TBL] [Abstract][Full Text] [Related]
15. Influence of the ADP/ATP ratio, 2-oxoglutarate and divalent ions on Azospirillum brasilense PII protein signalling. Gerhardt ECM; Araújo LM; Ribeiro RR; Chubatsu LS; Scarduelli M; Rodrigues TE; Monteiro RA; Pedrosa FO; Souza EM; Huergo LF Microbiology (Reading); 2012 Jun; 158(Pt 6):1656-1663. PubMed ID: 22461486 [TBL] [Abstract][Full Text] [Related]
16. The ammonium transporter AmtB and the PII signal transduction protein GlnZ are required to inhibit DraG in Azospirillum brasilense. Moure VR; Siöberg CLB; Valdameri G; Nji E; Oliveira MAS; Gerdhardt ECM; Pedrosa FO; Mitchell DA; Seefeldt LC; Huergo LF; Högbom M; Nordlund S; Souza EM FEBS J; 2019 Mar; 286(6):1214-1229. PubMed ID: 30633437 [TBL] [Abstract][Full Text] [Related]
17. Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria. Huergo LF; Merrick M; Pedrosa FO; Chubatsu LS; Araujo LM; Souza EM Mol Microbiol; 2007 Dec; 66(6):1523-35. PubMed ID: 18028310 [TBL] [Abstract][Full Text] [Related]
18. Membrane sequestration of PII proteins and nitrogenase regulation in the photosynthetic bacterium Rhodobacter capsulatus. Tremblay PL; Drepper T; Masepohl B; Hallenbeck PC J Bacteriol; 2007 Aug; 189(16):5850-9. PubMed ID: 17586647 [TBL] [Abstract][Full Text] [Related]
19. Effect of P(II) and its homolog GlnK on reversible ADP-ribosylation of dinitrogenase reductase by heterologous expression of the Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase regulatory system in Klebsiella pneumoniae. Zhang Y; Pohlmann EL; Halbleib CM; Ludden PW; Roberts GP J Bacteriol; 2001 Mar; 183(5):1610-20. PubMed ID: 11160092 [TBL] [Abstract][Full Text] [Related]
20. P(II) signal transduction proteins are ATPases whose activity is regulated by 2-oxoglutarate. Radchenko MV; Thornton J; Merrick M Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12948-53. PubMed ID: 23818625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]