These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 17644625)
1. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Roberts K; Granum E; Leegood RC; Raven JA Plant Physiol; 2007 Sep; 145(1):230-5. PubMed ID: 17644625 [TBL] [Abstract][Full Text] [Related]
2. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Reinfelder JR; Milligan AJ; Morel FM Plant Physiol; 2004 Aug; 135(4):2106-11. PubMed ID: 15286292 [TBL] [Abstract][Full Text] [Related]
3. Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms. McGinn PJ; Morel FM Plant Physiol; 2008 Jan; 146(1):300-9. PubMed ID: 17993542 [TBL] [Abstract][Full Text] [Related]
4. Unicellular C4 photosynthesis in a marine diatom. Reinfelder JR; Kraepiel AM; Morel FM Nature; 2000 Oct; 407(6807):996-9. PubMed ID: 11069177 [TBL] [Abstract][Full Text] [Related]
5. Low CO2 results in a rearrangement of carbon metabolism to support C4 photosynthetic carbon assimilation in Thalassiosira pseudonana. Kustka AB; Milligan AJ; Zheng H; New AM; Gates C; Bidle KD; Reinfelder JR New Phytol; 2014 Nov; 204(3):507-520. PubMed ID: 25046577 [TBL] [Abstract][Full Text] [Related]
6. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms. Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472 [TBL] [Abstract][Full Text] [Related]
7. Localization of enzymes relating to C4 organic acid metabolisms in the marine diatom, Thalassiosira pseudonana. Tanaka R; Kikutani S; Mahardika A; Matsuda Y Photosynth Res; 2014 Sep; 121(2-3):251-63. PubMed ID: 24414292 [TBL] [Abstract][Full Text] [Related]
8. The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. Haimovich-Dayan M; Garfinkel N; Ewe D; Marcus Y; Gruber A; Wagner H; Kroth PG; Kaplan A New Phytol; 2013 Jan; 197(1):177-185. PubMed ID: 23078356 [TBL] [Abstract][Full Text] [Related]
9. Responses of carbonic anhydrases and Rubisco to abrupt CO Zeng X; Jin P; Zou D; Liu Y; Xia J Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194 [TBL] [Abstract][Full Text] [Related]
10. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms. Young JN; Hopkinson BM J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158 [TBL] [Abstract][Full Text] [Related]
11. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana. Clement R; Dimnet L; Maberly SC; Gontero B New Phytol; 2016 Mar; 209(4):1417-27. PubMed ID: 26529678 [TBL] [Abstract][Full Text] [Related]
12. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. Kroth PG; Chiovitti A; Gruber A; Martin-Jezequel V; Mock T; Parker MS; Stanley MS; Kaplan A; Caron L; Weber T; Maheswari U; Armbrust EV; Bowler C PLoS One; 2008 Jan; 3(1):e1426. PubMed ID: 18183306 [TBL] [Abstract][Full Text] [Related]
13. The physiology and genetics of CO2 concentrating mechanisms in model diatoms. Hopkinson BM; Dupont CL; Matsuda Y Curr Opin Plant Biol; 2016 Jun; 31():51-7. PubMed ID: 27055267 [TBL] [Abstract][Full Text] [Related]
14. The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum. Ewe D; Tachibana M; Kikutani S; Gruber A; Río Bártulos C; Konert G; Kaplan A; Matsuda Y; Kroth PG Photosynth Res; 2018 Aug; 137(2):263-280. PubMed ID: 29572588 [TBL] [Abstract][Full Text] [Related]
15. Diatom pyrenoids are encased in a protein shell that enables efficient CO Shimakawa G; Demulder M; Flori S; Kawamoto A; Tsuji Y; Nawaly H; Tanaka A; Tohda R; Ota T; Matsui H; Morishima N; Okubo R; Wietrzynski W; Lamm L; Righetto RD; Uwizeye C; Gallet B; Jouneau PH; Gerle C; Kurisu G; Finazzi G; Engel BD; Matsuda Y Cell; 2024 Oct; 187(21):5919-5934.e19. PubMed ID: 39357521 [TBL] [Abstract][Full Text] [Related]
16. The effects of pH and pCO Goldman JA; Bender ML; Morel FM Photosynth Res; 2017 Apr; 132(1):83-93. PubMed ID: 28062941 [TBL] [Abstract][Full Text] [Related]
17. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Tachibana M; Allen AE; Kikutani S; Endo Y; Bowler C; Matsuda Y Photosynth Res; 2011 Sep; 109(1-3):205-21. PubMed ID: 21365259 [TBL] [Abstract][Full Text] [Related]
18. PRIMARY CARBON AND NITROGEN METABOLIC GENE EXPRESSION IN THE DIATOM THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE): DIEL PERIODICITY AND EFFECTS OF INORGANIC CARBON AND NITROGEN(1). Granum E; Roberts K; Raven JA; Leegood RC J Phycol; 2009 Oct; 45(5):1083-92. PubMed ID: 27032353 [TBL] [Abstract][Full Text] [Related]
19. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. Tsuji Y; Nakajima K; Matsuda Y J Exp Bot; 2017 Jun; 68(14):3763-3772. PubMed ID: 28633304 [TBL] [Abstract][Full Text] [Related]
20. Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability. Thamatrakoln K; Bailleul B; Brown CM; Gorbunov MY; Kustka AB; Frada M; Joliot PA; Falkowski PG; Bidle KD Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20123-8. PubMed ID: 24277817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]