These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17644625)

  • 1. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control.
    Roberts K; Granum E; Leegood RC; Raven JA
    Plant Physiol; 2007 Sep; 145(1):230-5. PubMed ID: 17644625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom.
    Reinfelder JR; Milligan AJ; Morel FM
    Plant Physiol; 2004 Aug; 135(4):2106-11. PubMed ID: 15286292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms.
    McGinn PJ; Morel FM
    Plant Physiol; 2008 Jan; 146(1):300-9. PubMed ID: 17993542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unicellular C4 photosynthesis in a marine diatom.
    Reinfelder JR; Kraepiel AM; Morel FM
    Nature; 2000 Oct; 407(6807):996-9. PubMed ID: 11069177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low CO2 results in a rearrangement of carbon metabolism to support C4 photosynthetic carbon assimilation in Thalassiosira pseudonana.
    Kustka AB; Milligan AJ; Zheng H; New AM; Gates C; Bidle KD; Reinfelder JR
    New Phytol; 2014 Nov; 204(3):507-520. PubMed ID: 25046577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms.
    Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of enzymes relating to C4 organic acid metabolisms in the marine diatom, Thalassiosira pseudonana.
    Tanaka R; Kikutani S; Mahardika A; Matsuda Y
    Photosynth Res; 2014 Sep; 121(2-3):251-63. PubMed ID: 24414292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum.
    Haimovich-Dayan M; Garfinkel N; Ewe D; Marcus Y; Gruber A; Wagner H; Kroth PG; Kaplan A
    New Phytol; 2013 Jan; 197(1):177-185. PubMed ID: 23078356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of carbonic anhydrases and Rubisco to abrupt CO
    Zeng X; Jin P; Zou D; Liu Y; Xia J
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana.
    Clement R; Dimnet L; Maberly SC; Gontero B
    New Phytol; 2016 Mar; 209(4):1417-27. PubMed ID: 26529678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis.
    Kroth PG; Chiovitti A; Gruber A; Martin-Jezequel V; Mock T; Parker MS; Stanley MS; Kaplan A; Caron L; Weber T; Maheswari U; Armbrust EV; Bowler C
    PLoS One; 2008 Jan; 3(1):e1426. PubMed ID: 18183306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum.
    Kikutani S; Nakajima K; Nagasato C; Tsuji Y; Miyatake A; Matsuda Y
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9828-33. PubMed ID: 27531955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physiology and genetics of CO2 concentrating mechanisms in model diatoms.
    Hopkinson BM; Dupont CL; Matsuda Y
    Curr Opin Plant Biol; 2016 Jun; 31():51-7. PubMed ID: 27055267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum.
    Ewe D; Tachibana M; Kikutani S; Gruber A; Río Bártulos C; Konert G; Kaplan A; Matsuda Y; Kroth PG
    Photosynth Res; 2018 Aug; 137(2):263-280. PubMed ID: 29572588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry.
    Sharwood RE; Sonawane BV; Ghannoum O; Whitney SM
    J Exp Bot; 2016 May; 67(10):3137-48. PubMed ID: 27122573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of pH and pCO
    Goldman JA; Bender ML; Morel FM
    Photosynth Res; 2017 Apr; 132(1):83-93. PubMed ID: 28062941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2.
    Pinto H; Sharwood RE; Tissue DT; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3669-81. PubMed ID: 24723409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana.
    Tachibana M; Allen AE; Kikutani S; Endo Y; Bowler C; Matsuda Y
    Photosynth Res; 2011 Sep; 109(1-3):205-21. PubMed ID: 21365259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PRIMARY CARBON AND NITROGEN METABOLIC GENE EXPRESSION IN THE DIATOM THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE): DIEL PERIODICITY AND EFFECTS OF INORGANIC CARBON AND NITROGEN(1).
    Granum E; Roberts K; Raven JA; Leegood RC
    J Phycol; 2009 Oct; 45(5):1083-92. PubMed ID: 27032353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.