BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 1764467)

  • 21. Fluorescent bile acid derivatives: relationship between chemical structure and hepatic and intestinal transport in the rat.
    Holzinger F; Schteingart CD; Ton-Nu HT; Eming SA; Monte MJ; Hagey LR; Hofmann AF
    Hepatology; 1997 Nov; 26(5):1263-71. PubMed ID: 9362371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bile acid metabolism in mammals. VIII. Biliary secretion of cholylarginine by the isolated perfused rat liver.
    Yousef IM; Fisher MM
    Can J Physiol Pharmacol; 1975 Oct; 53(5):880-7. PubMed ID: 1201493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic analysis of hepatobiliary transport of vincristine in perfused rat liver. Possible roles of P-glycoprotein in biliary excretion of vincristine.
    Watanabe T; Miyauchi S; Sawada Y; Iga T; Hanano M; Inaba M; Sugiyama Y
    J Hepatol; 1992 Sep; 16(1-2):77-88. PubMed ID: 1362433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of conjugation reactions in enhancing biliary secretion of bile acids.
    Vessey DA; Whitney J; Gollan JL
    Biochem J; 1983 Sep; 214(3):923-7. PubMed ID: 6626163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence that interference with binding to hepatic cytosol binders can inhibit bile acid excretion in rats.
    Takikawa H; Sugiyama Y; Fernandez-Checa JC; Kuhlenkamp J; Ookhtens M; Kaplowitz N
    Hepatology; 1996 Jun; 23(6):1642-9. PubMed ID: 8675188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hepatic transport of fluorescent molecules: in vivo studies using intravital TV microscopy.
    Sherman IA; Fisher MM
    Hepatology; 1986; 6(3):444-9. PubMed ID: 3710433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hepatobiliary transport of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors conjugated with bile acids.
    Petzinger E; Nickau L; Horz JA; Schulz S; Wess G; Enhsen A; Falk E; Baringhaus KH; Glombik H; Hoffmann A
    Hepatology; 1995 Dec; 22(6):1801-11. PubMed ID: 7489992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hepato-biliary transport of amaranth by single pass liver perfusion in normal and carbon tetrachloride or alpha-naphthylisothiocyanate treated rats.
    Takahashi K; Higashi Y; Yata N
    J Pharmacobiodyn; 1986 Jul; 9(7):570-7. PubMed ID: 3772714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of cholyl-adenylate in rat liver microsomes by liquid chromatography/electrospray ionization-mass spectrometry.
    Ikegawa S; Ishikawa H; Oiwa H; Nagata M; Goto J; Kozaki T; Gotowda M; Asakawa N
    Anal Biochem; 1999 Jan; 266(1):125-32. PubMed ID: 9887221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of side-chain charge on hepatic transport of bile acids and bile acid analogues.
    Anwer MS; O'Maille ER; Hofmann AF; DiPietro RA; Michelotti E
    Am J Physiol; 1985 Oct; 249(4 Pt 1):G479-88. PubMed ID: 4050998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. alpha-Bromoisovalerylurea as model substrate for studies on pharmacokinetics of glutathione conjugation in the rat. II. Pharmacokinetics and stereoselectivity of metabolism and excretion in vivo and in the perfused liver.
    te Koppele JM; Dogterom P; Vermeulen NP; Meijer DK; van der Gen A; Mulder GJ
    J Pharmacol Exp Ther; 1986 Dec; 239(3):905-14. PubMed ID: 3795049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hepatic uptake and biliary excretion of the neuroprotectant 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo-(F)-quinoxaline in rat liver. Involvement of an organic anion transport system.
    Hansen KT
    Biochem Pharmacol; 1995 Feb; 49(4):489-93. PubMed ID: 7872954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of Mrp2 (Abcc2) in biliary excretion of moxifloxacin and its metabolites in the isolated perfused rat liver.
    Ahmed S; Vo NT; Thalhammer T; Thalhammer F; Gattringer KB; Jäger W
    J Pharm Pharmacol; 2008 Jan; 60(1):55-62. PubMed ID: 18088505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excretion of cholate glucuronide.
    Little JM; Chari MV; Lester R
    J Lipid Res; 1985 May; 26(5):583-92. PubMed ID: 4020296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Greater taurodeoxycholate biotransformation during backward perfusion of rat liver.
    Baumgartner U; Miyai K; Hardison WG
    Am J Physiol; 1986 Oct; 251(4 Pt 1):G431-5. PubMed ID: 3766730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ontogeny of hepatic bile acid conjugation in the rat.
    Suchy FJ; Courchene SM; Balistreri WF
    Pediatr Res; 1985 Jan; 19(1):97-101. PubMed ID: 2982127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of primary bile acids on bile lipid secretion from perfused dog liver.
    Hoffman NE; Donald DE; Hosmann AF
    Am J Physiol; 1975 Sep; 229(3):714-20. PubMed ID: 1211466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of hepatic taurine concentration on bile acid conjugation with taurine.
    Hardison WG; Proffitt JH
    Am J Physiol; 1977 Jan; 232(1):E75-9. PubMed ID: 835705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deconjugation of glycine-amidated bile salts does not occur in germfree rats.
    Borgström B; Midtvedt T; Corrie M
    Scand J Clin Lab Invest; 1987 Oct; 47(6):551-3. PubMed ID: 3672028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous monitoring of the biliary excretion of a pulse of labelled compounds.
    Sorrentino D
    J Pharmacol Methods; 1988 Aug; 20(1):1-7. PubMed ID: 3411973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.