These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17644765)

  • 1. "Do what I do" and "do how I do": different components of imitative learning are mediated by different neural structures.
    Petrosini L
    Neuroscientist; 2007 Aug; 13(4):335-48. PubMed ID: 17644765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The what and how of observational learning.
    Torriero S; Oliveri M; Koch G; Caltagirone C; Petrosini L
    J Cogn Neurosci; 2007 Oct; 19(10):1656-63. PubMed ID: 18271739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interference of left and right cerebellar rTMS with procedural learning.
    Torriero S; Oliveri M; Koch G; Caltagirone C; Petrosini L
    J Cogn Neurosci; 2004 Nov; 16(9):1605-11. PubMed ID: 15601522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical networks of procedural learning: evidence from cerebellar damage.
    Torriero S; Oliveri M; Koch G; Lo Gerfo E; Salerno S; Petrosini L; Caltagirone C
    Neuropsychologia; 2007 Mar; 45(6):1208-14. PubMed ID: 17166525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence.
    Sandrini M; Rossini PM; Miniussi C
    Neuropsychologia; 2008; 46(7):2056-63. PubMed ID: 18336847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning power of single behavioral units in acquisition of a complex spatial behavior: an observational learning study in cerebellar-lesioned rats.
    Graziano A; Leggio MG; Mandolesi L; Neri P; Molinari M; Petrosini L
    Behav Neurosci; 2002 Feb; 116(1):116-25. PubMed ID: 11895173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repetitive transcranial magnetic stimulation to the primary motor cortex interferes with motor learning by observing.
    Brown LE; Wilson ET; Gribble PL
    J Cogn Neurosci; 2009 May; 21(5):1013-22. PubMed ID: 18702578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of 5 Hz repetitive transcranial magnetic stimulation on motor learning.
    Sczesny-Kaiser M; Tegenthoff M; Schwenkreis P
    Neurosci Lett; 2009 Jun; 457(2):71-4. PubMed ID: 19429165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor learning affects visual movement perception.
    Engel A; Burke M; Fiehler K; Bien S; Rösler F
    Eur J Neurosci; 2008 May; 27(9):2294-302. PubMed ID: 18445220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of force after action observation: behavioural and neurophysiological studies.
    Porro CA; Facchin P; Fusi S; Dri G; Fadiga L
    Neuropsychologia; 2007 Oct; 45(13):3114-21. PubMed ID: 17681358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imitative behavior. A theoretical view.
    Wyrwicka W
    Pavlov J Biol Sci; 1988; 23(3):125-31. PubMed ID: 3050823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repetitive transcranial magnetic stimulation over the primary motor cortex disrupts early boost but not delayed gains in performance in motor sequence learning.
    Hotermans C; Peigneux P; de Noordhout AM; Moonen G; Maquet P
    Eur J Neurosci; 2008 Sep; 28(6):1216-21. PubMed ID: 18783369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neonatal imitation in chimpanzees (Pan troglodytes) tested with two paradigms.
    Bard KA
    Anim Cogn; 2007 Apr; 10(2):233-42. PubMed ID: 17180698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of brief imitative experience on EEG desynchronization during action observation.
    Marshall PJ; Bouquet CA; Shipley TF; Young T
    Neuropsychologia; 2009 Aug; 47(10):2100-6. PubMed ID: 19467360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Watch how to do it! New advances in learning by observation.
    Petrosini L; Graziano A; Mandolesi L; Neri P; Molinari M; Leggio MG
    Brain Res Brain Res Rev; 2003 Jun; 42(3):252-64. PubMed ID: 12791443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What is modelled during observational learning?
    Hodges NJ; Williams AM; Hayes SJ; Breslin G
    J Sports Sci; 2007 Mar; 25(5):531-45. PubMed ID: 17365540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracranial self-stimulation facilitates a spatial learning and memory task in the Morris water maze.
    Ruiz-Medina J; Morgado-Bernal I; Redolar-Ripoll D; Aldavert-Vera L; Segura-Torres P
    Neuroscience; 2008 Jun; 154(2):424-30. PubMed ID: 18468806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in motor cortical excitability induced by high-frequency repetitive transcranial magnetic stimulation of different stimulation durations.
    Jung SH; Shin JE; Jeong YS; Shin HI
    Clin Neurophysiol; 2008 Jan; 119(1):71-9. PubMed ID: 18039593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Culture in the mind's mirror: how anthropology and neuroscience can inform a model of the neural substrate for cultural imitative learning.
    Losin EA; Dapretto M; Iacoboni M
    Prog Brain Res; 2009; 178():175-90. PubMed ID: 19874969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.