BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 17645329)

  • 1. "Switched-on" flexible chalcogenopyrylium photosensitizers. Changes in photophysical properties upon binding to DNA.
    Ohulchanskyy TY; Gannon MK; Ye M; Skripchenko A; Wagner SJ; Prasad PN; Detty MR
    J Phys Chem B; 2007 Aug; 111(32):9686-92. PubMed ID: 17645329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red-emitting dyes with photophysical and photochemical properties controlled by pH.
    Novakova V; Miletin M; Kopecky K; Zimcik P
    Chemistry; 2011 Dec; 17(50):14273-82. PubMed ID: 22052840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the dark and light-induced toxicity of thio and seleno analogues of the thiopyrylium dye AA1.
    Detty MR; Gibson SL; Hilf R
    Bioorg Med Chem; 2004 May; 12(10):2589-96. PubMed ID: 15110840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sensitizer protonation on singlet oxygen production in aqueous and nonaqueous media.
    Arnbjerg J; Johnsen M; Nielsen CB; Jørgensen M; Ogilby PR
    J Phys Chem A; 2007 May; 111(21):4573-83. PubMed ID: 17480060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A selenopyrylium photosensitizer for photodynamic therapy related in structure to the antitumor agent AA1 with potent in vivo activity and no long-term skin photosensitization.
    Leonard KA; Hall JP; Nelen MI; Davies SR; Gollnick SO; Camacho S; Oseroff AR; Gibson SL; Hilf R; Detty MR
    J Med Chem; 2000 Nov; 43(23):4488-98. PubMed ID: 11087573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One- and two-photon singlet oxygen generation with new fluorene-based photosensitizers.
    Andrasik SJ; Belfield KD; Bondar MV; Hernandez FE; Morales AR; Przhonska OV; Yao S
    Chemphyschem; 2007 Feb; 8(3):399-404. PubMed ID: 17226876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural anthraquinones probed as Type I and Type II photosensitizers: singlet oxygen and superoxide anion production.
    Montoya SC; Comini LR; Sarmiento M; Becerra C; Albesa I; Argüello GA; Cabrera JL
    J Photochem Photobiol B; 2005 Jan; 78(1):77-83. PubMed ID: 15629252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysical properties of diphenyl-2,3-dihydroxychlorin and diphenylchlorin.
    Shan X; Wang T; Li S; Yang L; Fu L; Yang G; Wang Z; Ma JS
    J Photochem Photobiol B; 2006 Feb; 82(2):140-5. PubMed ID: 16388962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photophysical properties of neutral and cationic tetrapyridinoporphyrazines.
    Martí C; Nonell S; Nicolau M; Torres T
    Photochem Photobiol; 2000 Jan; 71(1):53-9. PubMed ID: 10649889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dithiaporphyrin derivatives as photosensitizers in membranes and cells.
    Minnes R; Weitman H; You Y; Detty MR; Ehrenberg B
    J Phys Chem B; 2008 Mar; 112(10):3268-76. PubMed ID: 18278897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel intercalators of pyrylium dye into double-stranded DNA.
    Yamamoto N; Okamoto T; Kawaguchi M
    Nucleic Acids Symp Ser; 1993; (29):83-4. PubMed ID: 8247804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of guanine specific photooxidation in the presence of berberine and palmatine: activation of photosensitized singlet oxygen generation through DNA-binding interaction.
    Hirakawa K; Kawanishi S; Hirano T
    Chem Res Toxicol; 2005 Oct; 18(10):1545-52. PubMed ID: 16533018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aza-BODIPY derivatives: enhanced quantum yields of triplet excited states and the generation of singlet oxygen and their role as facile sustainable photooxygenation catalysts.
    Adarsh N; Shanmugasundaram M; Avirah RR; Ramaiah D
    Chemistry; 2012 Oct; 18(40):12655-62. PubMed ID: 22945021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The microenvironment of DNA switches the activity of singlet oxygen generation photosensitized by berberine and palmatine.
    Hirakawa K; Hirano T
    Photochem Photobiol; 2008; 84(1):202-8. PubMed ID: 18173721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanism of photosensitized luminescence of singlet oxygen dimols in air-saturated pigment solutions].
    Krasnovskiĭ AA; Neverov KV
    Biofizika; 2010; 55(3):389-93. PubMed ID: 20586317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral and photophysical studies on cruciform oligothiophenes in solution and the solid state.
    Pina J; Seixas de Melo J; Burrows HD; Bilge A; Farrell T; Forster M; Scherf U
    J Phys Chem B; 2006 Aug; 110(31):15100-6. PubMed ID: 16884222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of singlet oxygen generation by DNA-binding photosensitizers.
    Hirakawa K; Hirano T; Nishimura Y; Arai T; Nosaka Y
    J Phys Chem B; 2012 Mar; 116(9):3037-44. PubMed ID: 22313410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic control of interchromophoric interaction in cationic bis-porphyrins toward efficient DNA photocleavage and singlet oxygen production in aqueous solution.
    Ishikawa Y; Yamakawa N; Uno T
    Bioorg Med Chem; 2007 Aug; 15(15):5230-8. PubMed ID: 17513112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental analysis of the luminescence signal of singlet oxygen for different photosensitizers.
    Baier J; Fuss T; Pöllmann C; Wiesmann C; Pindl K; Engl R; Baumer D; Maier M; Landthaler M; Bäumler W
    J Photochem Photobiol B; 2007 Jun; 87(3):163-73. PubMed ID: 17482831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-programmed control of photosensitized singlet oxygen production.
    Cló E; Snyder JW; Voigt NV; Ogilby PR; Gothelf KV
    J Am Chem Soc; 2006 Apr; 128(13):4200-1. PubMed ID: 16568974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.