These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 17645369)

  • 1. Distribution of power output during cycling: impact and mechanisms.
    Atkinson G; Peacock O; St Clair Gibson A; Tucker R
    Sports Med; 2007; 37(8):647-67. PubMed ID: 17645369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Science and cycling: current knowledge and future directions for research.
    Atkinson G; Davison R; Jeukendrup A; Passfield L
    J Sports Sci; 2003 Sep; 21(9):767-87. PubMed ID: 14579871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceptability of power variation during a simulated hilly time trial.
    Atkinson G; Peacock O; Law M
    Int J Sports Med; 2007 Feb; 28(2):157-63. PubMed ID: 17133287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of 30-km cycling time trial (TT30) pacing strategy through time-to-exhaustion at average TT30 pace.
    Ham DJ; Knez WL
    J Strength Cond Res; 2009 May; 23(3):1016-21. PubMed ID: 19387372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pacing pattern in a 30-minute maximal cycling test.
    Chaffin ME; Berg K; Zuniga J; Hanumanthu VS
    J Strength Cond Res; 2008 Nov; 22(6):2011-7. PubMed ID: 18978608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Intensified Endurance Training on Pacing and Performance in 4000-m Cycling Time Trials.
    Wallett AM; Woods AL; Versey N; Garvican-Lewis LA; Welvaert M; Thompson KG
    Int J Sports Physiol Perform; 2018 Jul; 13(6):735-741. PubMed ID: 29035591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance-dependent association of affect with pacing strategy in cycling time trials.
    Jones HS; Williams EL; Marchant D; Sparks SA; Midgley AW; Bridge CA; McNaughton L
    Med Sci Sports Exerc; 2015 Apr; 47(4):825-32. PubMed ID: 25121516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information Acquisition Differences between Experienced and Novice Time Trial Cyclists.
    Boya M; Foulsham T; Hettinga F; Parry D; Williams E; Jones H; Sparks A; Marchant D; Ellison P; Bridge C; McNaughton L; Micklewright D
    Med Sci Sports Exerc; 2017 Sep; 49(9):1884-1898. PubMed ID: 28441164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pacing Strategy in Short Cycling Time Trials.
    de Jong J; van der Meijden L; Hamby S; Suckow S; Dodge C; de Koning JJ; Foster C
    Int J Sports Physiol Perform; 2015 Nov; 10(8):1015-22. PubMed ID: 25756313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pacing strategies during a cycling time trial with simulated headwinds and tailwinds.
    Atkinson G; Brunskill A
    Ergonomics; 2000 Oct; 43(10):1449-60. PubMed ID: 11083127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.
    Fintelman DM; Sterling M; Hemida H; Li FX
    J Biomech; 2014 Jun; 47(8):1894-8. PubMed ID: 24726654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On voluntary rhythmic leg movement behaviour and control during pedalling.
    Hansen EA
    Acta Physiol (Oxf); 2015 Jun; 214 Suppl 702():1-18. PubMed ID: 26094819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of uphill time-trial bicycling performance in humans with a scaling-derived protocol.
    Heil DP; Murphy OF; Mattingly AR; Higginson BK
    Eur J Appl Physiol; 2001 Aug; 85(3-4):374-82. PubMed ID: 11560094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of the pacing strategies adopted by elite athletes during track cycling.
    Corbett J
    Int J Sports Physiol Perform; 2009 Jun; 4(2):195-205. PubMed ID: 19567923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable versus constant power strategies during cycling time-trials: prediction of time savings using an up-to-date mathematical model.
    Atkinson G; Peacock O; Passfield L
    J Sports Sci; 2007 Jul; 25(9):1001-9. PubMed ID: 17497402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power variation strategies for cycling time trials: a differential equation model.
    Boswell GP
    J Sports Sci; 2012; 30(7):651-9. PubMed ID: 22348315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cycling performance is superior for time-to-exhaustion versus time-trial in endurance laboratory tests.
    Coakley SL; Passfield L
    J Sports Sci; 2018 Jun; 36(11):1228-1234. PubMed ID: 28892462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort.
    St Clair Gibson A; Lambert EV; Rauch LH; Tucker R; Baden DA; Foster C; Noakes TD
    Sports Med; 2006; 36(8):705-22. PubMed ID: 16869711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of training-induced fatigue on pacing patterns in 40-km cycling time trials.
    Skorski S; Hammes D; Schwindling S; Veith S; Pfeiffer M; Ferrauti A; Kellmann M; Meyer T
    Med Sci Sports Exerc; 2015 Mar; 47(3):593-600. PubMed ID: 25003772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological variables at lactate threshold under-represent cycling time-trial intensity.
    Kenefick RW; Mattern CO; Mahood NV; Quinn TJ
    J Sports Med Phys Fitness; 2002 Dec; 42(4):396-402. PubMed ID: 12391432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.