BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 17645657)

  • 1. Coupling short-term changes in ambient UV-B levels with induction of UV-screening compounds.
    Sullivan JH; Gitz DC; Liu-Gitz L; Xu C; Gao W; Slusser J
    Photochem Photobiol; 2007; 83(4):863-70. PubMed ID: 17645657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.
    Caldwell MM; Bornman JF; Ballaré CL; Flint SD; Kulandaivelu G
    Photochem Photobiol Sci; 2007 Mar; 6(3):252-66. PubMed ID: 17344961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in biologically-active ultraviolet radiation reaching the Earth's surface.
    McKenzie RL; Aucamp PJ; Bais AF; Björn LO; Ilyas M
    Photochem Photobiol Sci; 2007 Mar; 6(3):218-31. PubMed ID: 17344959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological and physiological responses of two varieties of a highland species (Chenopodium quinoa Willd.) growing under near-ambient and strongly reduced solar UV-B in a lowland location.
    González JA; Rosa M; Parrado MF; Hilal M; Prado FE
    J Photochem Photobiol B; 2009 Aug; 96(2):144-51. PubMed ID: 19540773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reviewing the technical designs for experiments with ultraviolet-B radiation and impact on photosynthesis, DNA and secondary metabolism.
    Xu C; Sullivan JH
    J Integr Plant Biol; 2010 Apr; 52(4):377-87. PubMed ID: 20377699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term exposure to enhanced UV-B radiation has no significant effects on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings.
    Turtola S; Sallas L; Holopainen JK; Julkunen-Tiitto R; Kainulainen P
    Environ Pollut; 2006 Nov; 144(1):166-71. PubMed ID: 16515828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during Springtime ozone depletion in Antarctica.
    Ruhland CT; Xiong FS; Clark WD; Day TA
    Photochem Photobiol; 2005; 81(5):1086-93. PubMed ID: 15689180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview.
    Rozema J; Boelen P; Blokker P
    Environ Pollut; 2005 Oct; 137(3):428-42. PubMed ID: 16005756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of leaf cytology and anatomy in Brassica napus grown under above ambient levels of supplemental UV-B radiation.
    Fagerberg WR; Bornman JF
    Photochem Photobiol Sci; 2005 Mar; 4(3):275-9. PubMed ID: 15738995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature stress tolerance of conifer seedlings after exposure to UV-B radiation.
    L'Hirondelle SJ; Binder WD
    Photochem Photobiol; 2005; 81(5):1094-100. PubMed ID: 15853448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of UV-B radiation on seed yield of Glycine max and an assessment of F1 generation progeny for carryover effects.
    Chimphango SB; Brown CF; Musil CF; Dakora FD
    Physiol Plant; 2007 Nov; 131(3):378-86. PubMed ID: 18251877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal fluctuations in leaf phenolic composition under UV manipulations reflect contrasting strategies of alder and birch trees.
    Kotilainen T; Tegelberg R; Julkunen-Tiitto R; Lindfors A; O'Hara RB; Aphalo PJ
    Physiol Plant; 2010 Nov; 140(3):297-309. PubMed ID: 20626643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating UV-B effects and EDU protection in soybean leaves using fluorescence.
    Middleton EM; Kim MS; Krizek DT; Bajwa RK
    Photochem Photobiol; 2005; 81(5):1075-85. PubMed ID: 16022558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible impacts of changes in UV-B radiation on North American trees and forests.
    Sullivan JH
    Environ Pollut; 2005 Oct; 137(3):380-9. PubMed ID: 16005752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV-B and Mediterranean forest species: direct effects and ecological consequences.
    Paoletti E
    Environ Pollut; 2005 Oct; 137(3):372-9. PubMed ID: 16005751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing genotypic variability of cowpea (Vigna unguiculata [L.] Walp.) to current and projected ultraviolet-B radiation.
    Singh SK; Surabhi GK; Gao W; Reddy KR
    J Photochem Photobiol B; 2008 Nov; 93(2):71-81. PubMed ID: 18723366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of supplementary ultraviolet-B irradiance on maize yield and qualities: a field experiment.
    Gao W; Zheng Y; Slusser JR; Heisler GM; Grant RH; Xu J; He D
    Photochem Photobiol; 2004; 80():127-31. PubMed ID: 15339220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The effect of medium-wave UV-radiation on the photosynthetic apparatus and the productivity of higher plants].
    Giller IuE; Shcherbakova IIu; Lipkina BI; Karieva FA; Shishkin VA
    Kosm Biol Aviakosm Med; 1991; 25(4):26-9. PubMed ID: 1960947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and morphological responses to different UV wavebands in cucumber (Cucumis sativum) and other dicotyledonous seedlings.
    Shinkle JR; Atkins AK; Humphrey EE; Rodgers CW; Wheeler SL; Barnes PW
    Physiol Plant; 2004 Feb; 120(2):240-248. PubMed ID: 15032858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative photobiology of growth responses to two UV-B wavebands and UV-C in dim-red-light- and white-light-grown cucumber (Cucumis sativus) seedlings: physiological evidence for photoreactivation.
    Shinkle JR; Derickson DL; Barnes PW
    Photochem Photobiol; 2005; 81(5):1069-74. PubMed ID: 15960589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.